Skip to main content
Log in

The exhumation along the Kenyase and Ketesso shear zones in the Sefwi terrane, West African Craton: a numerical study

  • Article
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

High-grade (amphibolite–granulite facies) tectono-metamorphic domains in the Sefwi terrane of Ghana are separated from adjacent lower-grade (greenschist facies) greenstone belts by two main shear zones. The high-grade rocks presumably exhumed along the sinistral shear zones during the D2 ENE-WSW transtension (~2073 Ma). To better understand the role boundary conditions and the spatial relationship of faults play in the exhumation of partially molten lower crust in the Sefwi terrane, ten 3D thermomechanical models have been constructed. The results show that the normal component of velocity boundary conditions mainly controls the exhumation (8–10 km) of the lower crust along pre-existing faults, while the exhumation in the relay zones between faults is controlled by the obliquity between the applied extensional velocity vector and the vertical wall on which it is applied. The strike of the exhumation belt made of partially molten lower crust rocks in the relay zone is sub-orthogonal to the horizontal maximum stretching axis. The isostatic compensation from low-density upper mantle to overlying crust (thinning) is higher under transtension than under extension. The lower crust exhumation influenced by inherited shear zones (ductile) can be used to better understand the loci of the high-grade rocks in the Sefwi terrane. We suggest that the Kukuom-Juaboso domain composed of amphibolite–migmatite facies rocks probably resulted from the concentration of partially molten rocks in the relay zone between the Ketesso and Kenyase shear zones during the D2 ENE-WSW transtension. The two shear zones probably underwent two main stages for growth and maturation from the D1 to D2 phases. The regional exhumation of the high-grade rocks in the Sefwi terrane probably occurred within < 5 Ma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abers, G.A., Ferris, A., Craig, M., Davies, H., Lerner-Lam, A.L., Mutter, J.C., and Taylor, B., 2002, Mantle compensation of active metamorphic core complexes at Woodlark rift in Papua New Guinea. Nature, 418, 862–865.

    Article  Google Scholar 

  • Agyei Duodu, J., Loh, G.K., and Boamah, K.O., 2009, Geological map of Ghana (1:1,000,000). Geological Survey Department of Ghana (GSD).

    Google Scholar 

  • Baratoux, L., Metelka, V., Naba, S., Jessell, M.W., Grégoire, M., and Ganne, J., 2011, Juvenile Paleoproterozoic crust evolution during the Eburnean orogeny (~2.2–2.0 Ga), western Burkina Faso. Precambrian Research, 191, 18–45.

    Article  Google Scholar 

  • Banks, R.J., Parker, R.L., and Huestis, S.P., 1977, Isostatic compensation on a continental scale: local versus regional mechanisms. Geophysical Journal International, 51, 431–452.

    Article  Google Scholar 

  • Bellahsen, N. and Daniel, J.M., 2005, Fault reactivation control on normal fault growth: an experimental study. Journal of Structural Geology, 27, 769–780.

    Article  Google Scholar 

  • Block, S., Ganne, J., Baratoux, L., Zeh, A., Parra-Avila, L.A., Jessell, M., Ailleres, L., and Siebenaller, L., 2015, Petrological and geochronological constraints on lower crust exhumation during Paleoproterozoic (Eburnean) orogeny, NWGhana, West African Craton. Journal of Metamorphic Geology, 33, 463–494.

    Article  Google Scholar 

  • Brun, J.P., Sokoutis, D., and Van Den Driessche, J., 1994, Analogue modeling of detachment fault systems and core complexes. Geology, 22, 319–322.

    Article  Google Scholar 

  • Chester, J.S., Logan, J.M., and Spang, J.H., 1991, Influence of layering and boundary conditions on fault-bend and fault-propagation folding. Geological Society of America Bulletin, 103, 1059–1072.

    Article  Google Scholar 

  • Cowie, P.A. and Scholz, C.H., 1992, Physical explanation for the displacement- length relationship of faults using a post-yield fracture mechanics model. Journal of Structural Geology, 14, 1133–1148.

    Article  Google Scholar 

  • Dasgupta, S. and Mukherjee, S., 2017, Brittle shear tectonics in a narrow continental rift: asymmetric non-volcanic Barmer basin (Rajasthan, India). The Journal of Geology, 125, 561–591.

    Article  Google Scholar 

  • Drucker, D.C. and Prager, W., 2013, Soil mechanics and plastic analysis or limit design. Quarterly of Applied Mathematics, 10, 157–165.

    Google Scholar 

  • Dooley, T.P. and Schreurs, G., 2012, Analogue modelling of intraplate strike-slip tectonics: a review and new experimental results. Tectonophysics, 574, 1–71.

    Google Scholar 

  • Echtler, H. and Malavieille, J., 1990, Extensional tectonics, basement uplift and Stephano-Permian collapse basin in a late Variscan metamorphic core complex (Montagne Noire, southern Massif Central). Tectonophysics, 177, 125–138.

    Article  Google Scholar 

  • Faulkner, D.R., Jackson, C.A.L., Lunn, R.J., Schlische, R.W., Shipton, Z.K., Wibberley, C.A.J., and Withjack, M.O., 2010, A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology, 32, 1557–1575.

    Article  Google Scholar 

  • Feng, X., Amponsah, P.O., Martin, R., Ganne, J., and Jessell, M.W., 2016a, 3-D numerical modelling of the influence of pre-existing faults and boundary conditions on the distribution of deformation: example of North-Western Ghana. Precambrian Research, 274, 161–179.

    Article  Google Scholar 

  • Feng, X., Jessell, M.W., Amponsah, P.O., Martin, R., Ganne, J., Liu, D., and Batt, E.G., 2016b, Effect of strain-weakening on Oligocene- Miocene self-organization of the Australian-Pacific plate boundary fault in southern New Zealand: insights from numerical modelling. Journal of Geodynamics, 100, 130–143.

    Article  Google Scholar 

  • Feng, X., 2016c, Modélisation numérique des failles décrochantes et des effets de compression grande échelle–Cas d'étude en Afrique de l'Ouest et Nouvelle Zélande. Ph.D. Thesis, Universit de Toulouse, Universit Toulouse III-Paul Sabatier, Toulouse, 230 p.

  • Feybesse, J.L., Billa, M., Guerrot, C., Duguey, E., Lescuyer, J.L., Milesi, J.P., and Bouchot, V., 2006, The paleoproterozoic Ghanaian province: geodynamic model and ore controls, including regional stress modeling. Precambrian Research, 149, 149–196.

    Article  Google Scholar 

  • Fossen, H. and Tikoff, B., 1998, Extended models of transpression and transtension, and application to tectonic settings. In: Holdsworth, R.E., Strachan, R.A., and Dewey, J.F. (eds.), Continental Transpressional and Transtensional Tectonics. Geological Society, London, Special Publications, 135, p. 15–33.

    Google Scholar 

  • Ganne, J., De Andrade, V., Weinberg, R.F., Vidal, O., Dubacq, B., Kagambega, N., Naba, S., Baratoux, L., Jessell, M., and Allibon, J., 2012, Modern-style plate subduction preserved in the Palaeoproterozoic West African craton. Nature Geoscience, 5, 60–65.

    Article  Google Scholar 

  • Ganne, J., Gerbault, M., and Block, S., 2014. Thermo-mechanical modeling of lower crust exhumation–constraints from the metamorphic record of the Palaeoproterozoic Eburnean orogeny, West African Craton. Precambrian Research, 243, 88–109.

    Article  Google Scholar 

  • Ganne, J., Feng, X., Rey, P., and Andrade, V.D., 2016, Statistical petrology reveals a link between supercontinents cycle and mantle global climate. American Mineralogist, 101, 2768–2773.

    Article  Google Scholar 

  • Gerya, T.V., Perchuk, L.L., and Burg, J.P., 2008, Transient hot channels: perpetrating and regurgitating ultrahigh-pressure, high-temperature crust-mantle associations in collision belts. Lithos, 103, 236–256.

    Article  Google Scholar 

  • Giba, M., Walsh, J.J., and Nicol, A., 2012, Segmentation and growth of an obliquely reactivated normal fault. Journal of Structural Geology, 39, 253–267.

    Article  Google Scholar 

  • Gueydan, F., Précigout, J., and Montesi, L.G., 2014, Strain weakening enables continental plate tectonics. Tectonophysics, 631, 189–196.

    Article  Google Scholar 

  • Gupta, A. and Scholz, C.H., 2000, A model of normal fault interaction based on observations and theory. Journal of Structural Geology, 22, 865–879.

    Article  Google Scholar 

  • Hirdes, W., Davis, D.W., and Eisenlohr, B.N., 1992, Reassessment of Proterozoic granitoid ages in Ghana on the basis of U/Pb zircon and monazite dating. Precambrian Research, 56, 89–96.

    Article  Google Scholar 

  • Hus, R., De Batist, M., Klerkx, J., and Matton, C., 2006, Fault linkage in continental rifts: structure and evolution of a large relay ramp in Zavarotny; Lake Baikal (Russia). Journal of Structural Geology, 28, 1338–1351.

    Article  Google Scholar 

  • Jessell, M.W., Amponsah, P.O., Baratoux, L., Asiedu, D.K., Loh, G.K., and Ganne, J., 2012, Crustal-scale transcurrent shearing in the Paleoproterozoic Sefwi-Sunyani-Como region, West Africa. Precambrian Research, 212–213, 155–168.

    Google Scholar 

  • Jessell, M.W., Begg, G.C., and Miller, M.S., 2016, The geophysical signatures of the West African Craton. Precambrian Research, 274, 3–24.

    Article  Google Scholar 

  • Keller, T., May, D.A., and Kaus, B.J., 2013, Numerical modelling of magma dynamics coupled to tectonic deformation of lithosphere and crust. Geophysical Journal International, 195, 1406–1442.

    Article  Google Scholar 

  • Kim, Y.S., Andrews, J.R., and Sanderson, D.J., 2001, Reactivated strikeslip faults: examples from north Cornwall, UK. Tectonophysics, 340, 173–194.

    Article  Google Scholar 

  • Kim, Y.S., Peacock, D.C., and Sanderson, D.J., 2004, Fault damage zones. Journal of Structural Geology, 26, 503–517.

    Article  Google Scholar 

  • Koyi, H.A. and Skelton, A., 2001, Centrifuge modelling of the evolution of low-angle detachment faults from high-angle normal faults. Journal of Structural Geology, 23, 1179–1185.

    Article  Google Scholar 

  • Le Pourhiet, L., Burov, E., and Moretti, I., 2004, Rifting through a stack of inhomogeneous thrusts (the dipping pie concept). Tectonics, 23. https://doi.org/10.1029/2003TC001584

    Google Scholar 

  • Lin, C.H., 2000, Thermal modeling of continental subduction and exhumation constrained by heat flow and seismicity in Taiwan. Tectonophysics, 324, 189–201.

    Article  Google Scholar 

  • Lin, S., Jiang, D., and Williams, P.F., 1998, Transpression (or transtension) zones of triclinic symmetry: natural example and theoretical modelling. In: Holdsworth, R.E., Strachan, R.A., and Dewey, J.F. (eds.), Continental Transpressional and Transtensional Tectonics. Geological Society, London, Special Publications, 135, 41–57.

    Google Scholar 

  • McFarlane, H.B., Block, S., Ailleres, L., Betts, P., Ganne, J., Baratoux, L., and Jessell, M., 2016, Lower and middle crust exhumation during Palaeoproterozoic accretionary tectonics: key new evidence from the Sefwi Greenstone Belt, SWGhana. Proceedings of the 35th International Geological Congress (Abstract), Aug. 27–Sep. 4, Cape Town, p. 4504.

    Google Scholar 

  • McFarlane, H.B., 2018, The geodynamic and tectonic evolution of the Palaeoproterozoic Sefwi Greenstone Belt, West African Craton (Ghana). Ph.D. Thesis, Universit Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) et Monash University (Australie), Toulouse, 297 p.

  • Milési, J.P., Feybesse, J.L., and Pinna, P., 2004, Geological map of Africa (1:10,000,000), SIGAfrique project. Proceedings of the 20th Conference of African Geology, Orleans, Jun. 2–7. Available at: http:// www.sigafrique.net

    Google Scholar 

  • Misra, A.A. and Mukherjee, S., 2015, Tectonic Inheritance in Continental Rifts and Passive Margins. Springer International Publishing, Cham, 88 p.

  • Moresi, L. and Solomatov, S., 1995, Numerical investigation of 2D convection with extremely large viscosity variations. Physics of Fluids, 7, 2154–2162.

    Article  Google Scholar 

  • Moresi, L., Dufour, F., and Mühlhaus, H.B., 2003, A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials. Journal of Computational Physics, 184, 476–497.

    Article  Google Scholar 

  • Moresi, L., Quenette, S., Lemiale, V., Meriaux, C., Appelbe, B., and Muhlhaus, H., 2007, Computational approaches to studying nonlinear dynamics of the crust and mantle. Physics of the Earth and Planetary Interior, 163, 69–82.

    Article  Google Scholar 

  • Morley, C.K., Haranya, C., Phoosongsee, W., Pongwapee, S., Kornsawan, A., and Wonganan, N., 2004, Activation of rift oblique and rift parallel pre-existing fabrics during extension and their effect on deformation style: examples from the rifts of Thailand. Journal of Structural Geology, 26, 1803–1829.

    Article  Google Scholar 

  • Mukherjee, S. and Mulchrone, K., 2012, Estimating the viscosity and Prandtl number of the Tso Morari Gneiss Dome, western Indian Himalaya. International Journal of Earth Sciences, 101, 1929–1947.

    Article  Google Scholar 

  • Mukherjee, S., 2013, Channel flow extrusion model to constrain dynamic viscosity and Prandtl number of the Higher Himalayan Shear Zone. International Journal of Earth Sciences 102, 1811–1835.

    Article  Google Scholar 

  • Mukherjee, S., 2017a, Shear heating by translational brittle reverse faulting along a single, sharp and straight fault plane. Journal of Earth System Science, 126. https://doi.org/10.1007/s12040-016-0788-5

    Google Scholar 

  • Mukherjee, S., 2017b, Airy’s isostatic model: a proposal for a realistic case. Arabian Journal of Geosciences, 10, 268. https://doi.org/10.1007/ s12517-017-3050-9

    Article  Google Scholar 

  • Mukherjee, S., 2018a, Locating center of gravity in geological contexts. International Journal of Earth Sciences, 107, 1935–1939.

    Article  Google Scholar 

  • Mukherjee, S., 2018b, Moment of inertia for rock blocks subject to bookshelf faulting with geologically plausible density distributions. Journal of Earth System Science, 127, 80. https://doi.org/10.1007/ s12040-018-0978-4

    Article  Google Scholar 

  • Mukherjee, S. (In press), Using graph theory to represent brittle plane networks. In: Billi, A. and Fagereng, A. (eds.), Problems and Solutions in Structural Geology and Tectonics. v. 5, Developments in Structural Geology and Tectonics Series, Elsevier, ISBN: 9780128140482.

  • Pachell, M.A. and Evans, J.P., 2002, Growth, linkage, and termination processes of a 10-km-long strike-slip fault in jointed granite: the Gemini fault zone, Sierra Nevada, California. Journal of Structural Geology, 24, 1903–1924.

    Article  Google Scholar 

  • Peacock, D.C.P. and Parfitt, E.A., 2002, Active relay ramps and normal fault propagation on Kilauea Volcano, Hawaii. Journal of Structural Geology, 24, 729–742.

    Article  Google Scholar 

  • Piccardo, G.B., 2016, Evolution of the lithospheric mantle during passive rifting: inferences from the Alpine-Apennine orogenic peridotites. Gondwana Research, 39, 230–249.

    Article  Google Scholar 

  • Ranalli, G., 1995, Rheology of the Earth. Springer, Cham, 413 p.

  • Rey, P.F., Teyssier, C., and Whitney, D.L., 2009, The role of partial melting and extensional strain rates in the development of metamorphic core complexes. Tectonophysics, 477, 135–144.

    Article  Google Scholar 

  • Rollinson, H., 2016, Archaean crustal evolution in West Africa: a new synthesis of the Archaean geology in Sierra Leone, Liberia, Guinea and Ivory Coast. Precambrian Research, 281, 1–12.

    Article  Google Scholar 

  • Sharples, W., Moresi, L.N., Jadamec, M.A., and Revote, J., 2015, Styles of rifting and fault spacing in numerical models of crustal extension. Journal of Geophysical Research: Solid Earth, 120, 4379–4404.

    Google Scholar 

  • Soliva, R., Benedicto, A., Schultz, R.A., Maerten, L., and Micarelli, L., 2008, Displacement and interaction of normal fault segments branched at depth: implications for fault growth and potential earthquake rupture size. Journal of Structural Geology, 30, 1288–1299.

    Article  Google Scholar 

  • Teufel, L.W. and Clark, J.A., 1984, Hydraulic fracture propagation in layered rock: experimental studies of fracture containment. Society of Petroleum Engineers Journal, 24, 19–32.

    Article  Google Scholar 

  • Tirel, C., Brun, J.P., and Burov, E., 2004, Thermomechanical modeling of extensional gneiss domes. In: Whitney, D.L., Teyssier, C., and Siddoway, C.S. (eds.), Gneiss Domes in Orogeny. GSA Special Papers, Geological Society of America, 380, p. 67–78.

    Article  Google Scholar 

  • Tirel, C., Brun, J.P., and Burov, E., 2008, Dynamics and structural development of metamorphic core complexes. Journal of Geophysical Research: Solid Earth, 113. https://doi.org/10.1029/2005JB003694

    Google Scholar 

  • Vanderhaeghe, O., 2001, Melt segregation, pervasive melt migration and magma mobility in the continental crust: the structural record from pores to orogens. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26, 213–223.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Wang, E., Ganne, J. et al. The exhumation along the Kenyase and Ketesso shear zones in the Sefwi terrane, West African Craton: a numerical study. Geosci J 23, 391–408 (2019). https://doi.org/10.1007/s12303-018-0057-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-018-0057-5

Key words

Navigation