Skip to main content
Log in

Characteristics analysis of the complete Wurfbainia villosa chloroplast genome

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Wurfbainia villosa, which belongs to the huge family Zingiberaceae, is used in the clinic for the treatment of spleen and stomach diseases in southern China. The complete chloroplast genome of W. villosa was sequenced and analyzed using next-generation sequencing technology in the present work. The results showed that the W. villosa chloroplast genome is a circular molecule with 163,608 bp in length. It harbors a pair of inverted repeat regions (IRa and IRb) of 29,820 bp in length, which separate the large single copy (LSC, 88,680 bp) region and the small single copy (SSC, 15,288 bp) region. After annotation, 134 genes were identified in this plastome in total, comprising of 87 protein-coding genes, 38 transfer RNA genes, 8 ribosomal RNA genes and one pseudogene (ycf1). Codon usage, RNA editing sites and single/long sequence repeats were investigated to understand the structural characteristics of the W. villosa chloroplast genome. Furthermore, IR contraction and expansion were analyzed by comparison of complete chloroplast genomes of W. villosa and four other Zingiberaceae species. Finally, a phylogeny study based on the chloroplast genome of W. villosa, along with that of 15 different species, was conducted to further investigate the relationship among these lineages. Overally, our results represented the first insight into the chloroplast genome of W. villosa, and could serve as a significant reference for species identification, genetic diversity analysis and phylogenetic research between W. villosa and other species within Zingiberaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barbosa GB, Jayasinghe NS, Natera SHA, Inutan ED, Peteros NP, Roessner U (2017) From common to rare Zingiberaceae plants—a metabolomics study using GC–MS. Phytochemistry 140:141–150

    Article  CAS  Google Scholar 

  • Bendich AJ (2004) Circular chloroplast chromosomes: the grand illusion. Plant Cell 16(7):1661–1666

    Article  CAS  Google Scholar 

  • Chen J, Ding P, Xu X, Xu H (2001) A resource investigation and commodity identification of Fructus Amomi. J Chin Med Mater 24(1):18–19

    CAS  Google Scholar 

  • Chen SL, Sun C, Song JY, Xu J et al (2018) Herbgenomics. China Science Publishing & Media Ltd., Beijing

    Google Scholar 

  • Clegg MT, Gaut BS, Learn GH, Morton BR (1994) Rates and patterns of chloroplast DNA evolution. Proc Natl Acad Sci USA 91(15):6795–6801

    Article  CAS  Google Scholar 

  • Diao WR, Zhang LL, Feng SS, Xu JG (2014) Chemical composition, antibacterial activity, and mechanism of action of the essential oil from Amomum kravanh. J Food Prot 77(10):1740–1746

    Article  CAS  Google Scholar 

  • Dong W, Xu C, Li C, Sun J, Zuo Y, Shi S, Cheng T, Guo J, Zhou S (2015) ycf1, the most promising plastid DNA barcode of land plants. Sci Rep 5:8348

    Article  CAS  Google Scholar 

  • Dong W, Xu C, Li W, Xie X, Lu Y, Liu Y, Jin X, Suo Z (2017) Phylogenetic resolution in juglans based on complete chloroplast genomes and nuclear DNA sequences. Front Plant Sci 8:1148

    Article  Google Scholar 

  • Dubchak I, Ryaboy DV (2006) VISTA family of computational tools for comparative analysis of DNA sequences and whole genomes. Methods Mol Biol 338:69–89

    CAS  PubMed  Google Scholar 

  • Dyall SD, Brown MT, Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304(5668):253–257

    Article  CAS  Google Scholar 

  • Ebrahimzadeh Attari V, Malek Mahdavi A, Javadivala Z, Mahluji S, Zununi Vahed S, Ostadrahimi A (2018) A systematic review of the anti-obesity and weight lowering effect of ginger (Zingiber officinale Roscoe) and its mechanisms of action. Phytother Res 32(4):577–585

    Article  Google Scholar 

  • Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I (2004) VISTA: computational tools for comparative genomics. Nucleic Acids Res 32(Web Server issue):W273–W279

    Article  CAS  Google Scholar 

  • Hennequin C, Thierry A, Richard GF, Lecointre G, Nguyen HV, Gaillardin C, Dujon B (2001) Microsatellite typing as a new tool for identification of Saccharomyces cerevisiae strains. J Clin Microbiol 39(2):551–559

    Article  CAS  Google Scholar 

  • Huang H, Shi C, Liu Y, Mao SY, Gao LZ (2014a) Thirteen Camellia chloroplast genome sequences determined by high-throughput sequencing: genome structure and phylogenetic relationships. BMC Evol Biol 14:151

    Article  Google Scholar 

  • Huang Q, Duan Z, Yang J, Ma X, Zhan R, Xu H, Chen W (2014b) SNP typing for germplasm identification of Amomum villosum L. based on DNA barcoding markers. PLoS ONE 9(12):e114940

    Article  Google Scholar 

  • Kerstin D, Trevor RH, Evelyn F, Susanne B (2008) An optimized chloroplast DNA extraction protocol for grasses (Poaceae) proves suitable for whole plastid genome sequencing and SNP detection. PLoS ONE 3(7):e2350

    Article  Google Scholar 

  • Kim KJ, Lee HL (2004) Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res 11(4):247–261

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    Article  CAS  Google Scholar 

  • Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R (2001) REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29(22):4633–4642

    Article  CAS  Google Scholar 

  • Ni L, Zhao Z, Xu H, Chen S, Dorje G (2016) The complete chloroplast genome of Gentiana straminea (Gentianaceae), an endemic species to the Sino-Himalayan subregion. Gene 577(2):281–288

    Article  CAS  Google Scholar 

  • Ratnere I, Dubchak I (2009) Obtaining comparative genomic data with the VISTA family of computational tools. Curr Prot Bioinform 10:10–16

    Google Scholar 

  • Reginato M, Neubig KM, Majure LC, Michelangeli FA (2016) The first complete plastid genomes of Melastomataceae are highly structurally conserved. PeerJ 4:e2715

    Article  Google Scholar 

  • Rodriguez A, Wright G, Emrich S, Clark PL (2018) %MinMax: a versatile tool for calculating and comparing synonymous codon usage and its impact on protein folding. Protein Sci 27(1):356–362

    Article  CAS  Google Scholar 

  • Sharifi-Rad M, Varoni EM, Salehi B, Sharifi-Rad J, Matthews KR, Ayatollahi SA, Kobarfard F, Ibrahim SA, Mnayer D, Zakaria ZA et al (2017) Plants of the genus zingiber as a source of bioactive phytochemicals: from tradition to pharmacy. Molecules 22(12):2145

    Article  Google Scholar 

  • Shen X, Wu M, Liao B, Liu Z, Bai R, Xiao S, Li X, Zhang B, Xu J, Chen S (2017) Complete chloroplast genome sequence and phylogenetic analysis of the medicinal plant Artemisia annua. Molecules 22(8):1330

    Article  Google Scholar 

  • Sudianto E, Wu CS, Leonhard L, Martin WF, Chaw SM (2019) Enlarged and highly repetitive plastome of Lagarostrobos and plastid phylogenomics of Podocarpaceae. Mol Phylogenet Evol 133:24–32

    Article  Google Scholar 

  • Tadini L, Ferrari R, Lehniger MK, Mizzotti C, Moratti F, Resentini F, Colombo M, Costa A, Masiero S, Pesaresi P (2018) Trans-splicing of plastid rps12 transcripts, mediated by AtPPR4, is essential for embryo patterning in Arabidopsis thaliana. Planta 248(1):257–265

    Article  CAS  Google Scholar 

  • Taheri S, Abdullah TL, Rafii MY, Harikrishna JA, Werbrouck SPO, Teo CH, Sahebi M, Azizi P (2019) De novo assembly of transcriptomes, mining, and development of novel EST-SSR markers in Curcuma alismatifolia (Zingiberaceae family) through Illumina sequencing. Sci Rep 9(1):3047

    Article  Google Scholar 

  • Tian YQ, Ding P, Yan XH, Hu WJ (2008) Discussion on quality control of preparations with cortex moutan in volume I pharmacopoeia of People’s Republic of China (2005 edition). Zhongguo Zhong Yao Za Zhi 33(3):339–341

    PubMed  Google Scholar 

  • Tian N, Han L, Chen C, Wang Z (2018) The complete chloroplast genome sequence of Epipremnum aureum and its comparative analysis among eight Araceae species. PLoS ONE 13(3):e0192956

    Article  Google Scholar 

  • Tsudzuki T, Wakasugi T, Sugiura M (2001) Comparative analysis of RNA editing sites in higher plant chloroplasts. J Mol Evol 53(4–5):327–332

    Article  CAS  Google Scholar 

  • Veleba A, Smarda P, Zedek F, Horova L, Smerda J, Bures P (2017) Evolution of genome size and genomic GC content in carnivorous holokinetics (Droseraceae). Ann Bot 119(3):409–416

    Article  CAS  Google Scholar 

  • Wang RJ, Cheng CL, Chang CC, Wu CL, Su TM, Chaw SM (2008) Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evol Biol 8:36

    Article  CAS  Google Scholar 

  • Wicke S, Schneeweiss GM, de Pamphilis CW, Muller KF, Quandt D (2011) The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol 76(3–5):273–297

    Article  CAS  Google Scholar 

  • Wu M, Li Q, Hu Z, Li X, Chen S (2017) The complete Amomum kravanh chloroplast genome sequence and phylogenetic analysis of the commelinids. Molecules 22(11):1875

    Article  Google Scholar 

  • Wu ML, Li Q, Xu J, Li XW (2018) Complete chloroplast genome of the medicinal plant Amomum compactum: gene organization, comparative analysis, and phylogenetic relationships within Zingiberales. Chin Med 13:10

    Article  Google Scholar 

  • Yukawa M, Tsudzuki T, Sugiura M (2006) The chloroplast genome of Nicotiana sylvestris and Nicotiana tomentosiformis: complete sequencing confirms that the Nicotiana sylvestris progenitor is the maternal genome donor of Nicotiana tabacum. Mol Genet Genom 275(4):367–373

    Article  CAS  Google Scholar 

  • Zhao Y, Yin J, Guo H, Zhang Y, Xiao W, Sun C, Wu J, Qu X, Yu J, Wang X et al (2014) The complete chloroplast genome provides insight into the evolution and polymorphism of Panax ginseng. Front Plant Sci 5:696

    PubMed  Google Scholar 

  • Zhu S, Shen J, Wang Z (2017) Identification of Amomum villosum and Jian Amomum villosum. Strait Pharm J 29(09):15–18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Song Huang or Xiasheng Zheng.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 143 kb)

Supplementary material 2 (DOC 175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, W., Li, J., Yang, Z. et al. Characteristics analysis of the complete Wurfbainia villosa chloroplast genome. Physiol Mol Biol Plants 26, 747–758 (2020). https://doi.org/10.1007/s12298-019-00748-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-019-00748-3

Keywords

Navigation