Skip to main content
Log in

Research progress on the autonomous flowering time pathway in Arabidopsis

  • Review Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

The transition from vegetative to reproductive growth phase is a pivotal and complicated process in the life cycle of flowering plants which requires a comprehensive response to multiple environmental aspects and endogenous signals. In Arabidopsis, six regulatory flowering time pathways have been defined by their response to distinct cues, namely photoperiod, vernalization, gibberellin, temperature, autonomous and age pathways, respectively. Among these pathways, the autonomous flowering pathway accelerates flowering independently of day length by inhibiting the central flowering repressor FLC. FCA, FLD, FLK, FPA, FVE, FY and LD have been widely known to play crucial roles in this pathway. Recently, AGL28, CK2, DBP1, DRM1, DRM2, ESD4, HDA5, HDA6, PCFS4, PEP, PP2A-B’γ, PRMT5, PRMT10, PRP39-1, REF6, and SYP22 have also been shown to be involved in the autonomous flowering time pathway. This review mainly focuses on FLC RNA processing, chromatin modification of FLC, post-translational modification of FLC and other molecular mechanisms in the autonomous flowering pathway of Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abou-Elwafa SF, Büttner B, Chia T, Schulze-Buxloh G, Hohmann U, Mutasa-Göttgens E, Jung C, Müller AE (2011) Conservation and divergence of autonomous pathway genes in the flowering regulatory network of Beta vulgaris. J Exp Bot 62:3359–3374

    Article  CAS  PubMed  Google Scholar 

  • Amasino R (2004) Take a cold flower. Nat Genet 36:111–112

    Article  CAS  PubMed  Google Scholar 

  • Aukerman MJ, Lee I, Weigel D, Amasino RM (1999) The Arabidopsis flowering-time gene LUMINIDEPENDENS is expressed primarily in regions of cell proliferation and encodes a nuclear protein that regulates LEAFY expression. Plant J 18:195–203

    Article  CAS  PubMed  Google Scholar 

  • Ausin I, Alonso-Blanco C, Jarillo JA, Ruiz-Garcia L, Martinez-Zapater JM (2004) Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nat Genet 36:162–166

    Article  CAS  PubMed  Google Scholar 

  • Bäurle I, Dean C (2008) Differential interactions of the autonomous pathway RRM proteins and chromatin regulators in the silencing of Arabidopsis targets. PLoS ONE 3:e2733

    Article  PubMed  PubMed Central  Google Scholar 

  • Bäurle I, Smith L, Baulcombe DC, Dean C (2007) Widespread role for the flowering-time regulators FCA and FPA in RNA-mediated chromatin silencing. Science 318:109–112

    Article  PubMed  Google Scholar 

  • Blázquez M, Koornneef M, Putterill J (2001) Flowering on time: genes that regulate the floral transition. Workshop on the molecular basis of flowering time control. EMBO Rep 2:1078–1082

    Article  PubMed  PubMed Central  Google Scholar 

  • Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16:S18–S31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrasco JL, Castelló MJ, Vera P (2006) 14-3-3 mediates transcriptional regulation by modulating nucleocytoplasmic shuttling of tobacco DNA-binding protein phosphatase. J Biol Chem 281:22875–22881

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Kato N, Wang W, Li J, Chen X (2003) Two RNA binding proteins, HEN4 and HUA1, act in the processing of AGAMOUS pre-mRNA in Arabidopsis thaliana. Dev Cell 4:53–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domagalska MA, Schomburg FM, Amasino RM, Vierstra RD, Nagy F, Davis SJ (2007) Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering. Development 134:2841–2850

    Article  CAS  PubMed  Google Scholar 

  • Ebine K, Uemura T, Nakano A, Ueda T (2012) Flowering time modulation by a vacuolar SNARE via FLOWERING LOCUS C in Arabidopsis thaliana. PLoS ONE 7:42239

    Article  Google Scholar 

  • He YH, Amasino RM (2005) Role of chromatin modification in flowering-time control. Trends Plant Sci 10:30–35

    Article  CAS  PubMed  Google Scholar 

  • He YH, Michaels SD, Amasino RM (2003) Regulation of flowering time by histone acetylation in Arabidopsis. Science 302:1751–1754

    Article  CAS  PubMed  Google Scholar 

  • Heidari B, Nemie-Feyissa D, Kangasjärvi S, Lillo C (2013) Antagonistic regulation of flowering time through distinct regulatory subunits of protein phosphatase 2A. PLoS ONE 8:e67987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hennig L, Bouveret R, Gruissem W (2005) MSI1-like proteins: an escort service for chromatin assembly and remodeling complexes. Trends Cell Biol 15:295–302

    Article  CAS  PubMed  Google Scholar 

  • Higgins JA, Bailey PC, Laurie DA (2010) Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses. PLoS ONE 5:e10065

    Article  PubMed  PubMed Central  Google Scholar 

  • Hornyik C, Duc C, Rataj K, Terzi LC, Simpson GG (2010a) Alternative polyadenylation of antisense RNAs and flowering time control. Biochem Soc Trans 38:1077–1081

    Article  CAS  PubMed  Google Scholar 

  • Hornyik C, Terzi LC, Simpson GG (2010b) The spen family protein FPA controls alternative cleavage and polyadenylation of RNA. Dev Cell 18:203–213

    Article  CAS  PubMed  Google Scholar 

  • Jiang D, Yang W, He Y, Amasino RM (2007) Arabidopsis relatives of the human lysine-specific demethylase 1 repress the expression of FWA and FLOWERING LOCUS C and thus promote the floral transition. Plant Cell 19:2975–2987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenzior AL, Folk WR (1998) AtMSI4 and RbAp48 WD-40 repeat proteins bind metal ions. FEBS Lett 440:425–429

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Hyun Y, Park JY, Park MJ, Park MK, Kim MD, Lee MH, Moon J, Lee I, Kim J (2004) A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana. Nat Genet 36:167–171

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Choi K, Park C, Hwang HJ, Lee I (2006) SUPPRESSOR OF FRIGIDA4, encoding a C2H2-type zinc finger protein, represses flowering by transcriptional activation of Arabidopsis FLOWERING LOCUS C. Plant Cell 18:2985–2998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DH, Doyle MR, Sung S, Amasino RM (2009) Vernalization: winter and the timing of flowering in plants. Annu Rev Cell Dev Biol 25:277–299

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Weigel D (2007) Move on up, it’s time for change–mobile signals controlling photoperiod-dependent flowering. Genes Dev 21:2371–2384

    Article  CAS  PubMed  Google Scholar 

  • Lagercrantz U (2009) At the end of the day: a common molecular mechanism for photoperiod responses in plants? J Exp Bot 60:2501–2515

    Article  CAS  PubMed  Google Scholar 

  • Lee I, Aukerman MJ, Gore SL, Lohman KN, Michaels SD, Weaver LM, John MC, Feldmann KA, Amasino RM (1994) Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis. Plant Cell 6:75–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim MH, Kim J, Kim YS, Chung KS, Seo YH, Lee I, HongCB Kim HJ, Park CM (2004) A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERINGLOCUS C. Plant Cell 16:731–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Mara C (2010) Regulatory mechanisms for floral homeotic gene expression. Semin Cell Dev Biol 21:80–86

    Article  PubMed  Google Scholar 

  • Liu F, Quesada V, Crevillén P, Bäurle I, Swiezewski S, Dean C (2007) The Arabidopsis RNA-binding protein FCA requires alysine-specific demethylase 1 homolog to downregulate FLC. Mol Cell 28:398–407

    Article  PubMed  Google Scholar 

  • Luo M, Ready T, Yu CW, Yang SG, Chen CY, Lin WD, Wolfgang S, Wu KQ (2015) Regulation of flowering time by the histone deacetylase HDA5 in Arabidopsis. Plant J 82:925–936

    Article  CAS  PubMed  Google Scholar 

  • Macknight R, Bancroft I, Page T, Lister C, Schmidt R, Love K, Westphal L, Murphy G, Sherson S, Cobbett C, Dean C (1997) FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89:737–745

    Article  CAS  PubMed  Google Scholar 

  • Marquardt S (2006) Additional targets of the Arabidopsis autonomous pathway members. FCA and FY. J Exp Bot 57(13):3379–3386

    Article  CAS  PubMed  Google Scholar 

  • Michaels SD (2009) Flowering time regulation produces much fruit. Curr Opin Plant Biol 12:75–80

    Article  CAS  PubMed  Google Scholar 

  • Michaels SD, He Y, Scortecci KC, Amasino RM (2003) Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis. Proc Natl Acad Sci USA 100:10102–10107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mockler TC, Yu X, Shalitin D, Parikh D, Michael TP, Liou J, Huang J, Smith Z, Alonso JM, Ecker JR, Chory J, Lin C (2004) Regulation of flowering time in Arabidopsis by K homology domain proteins. Proc Natl Acad Sci USA 101:12759–12764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulekar JJ, Huq E (2015) Developmental pathways in a functionally overlapping manner. Plant Sci 236:295–303

    Article  CAS  PubMed  Google Scholar 

  • Mulekar JJ, Bu QY, Chen FL, Huq E (2012) Casein kinase II α subunits affect multiple developmental and stress responsive pathways in Arabidopsis. Plant J 69:343–354

    Article  CAS  PubMed  Google Scholar 

  • Niu LF, Lu FL, Pei YX, Liu CY, Cao XF (2007) Regulation of flowering time by the protein arginine methyltransferase AtPRMT10. EMBO Rep 8:1190–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noh B, Lee SH, Kim HJ, Yi G, Shin EA, Lee M, Jung KJ, Doyle MR, Amasino RM, Noh YS (2004) Divergent roles of a pair of homologous jumonji/zinc-finger-class transcription factor proteins in the regulation of Arabidopsis flowering time. Plant Cell 16:2601–2613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pazhouhandeh M, Molinier J, Berr A, Genschik P (2011) MSI4/FVE interacts with CUL4-DDB1 and a PRC2-like complex to control epigenetic regulation of flowering time in Arabidopsis. Proc Natl Acad Sci USA 108:3430–3435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pei Y, Niu L, Lu F, Liu C, Zhai J, Kong X, Cao X (2007) Mutations in the type II protein arginine methyltransferase AtPRMT5 result in pleiotropic developmental defects in Arabidopsis. Plant Physiol 144:1913–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quesada V, Macknight R, Dean C, Simpson GG (2003) Autoregulation of FCA pre-mRNA processing controls Arabidopsisflowering time. EMBO J 22:3142–3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quesada V, Dean C, Simpson GG (2005) Regulated RNA processing in the control of Arabidopsis flowering. Int J Dev Biol 49:773–780

    Article  CAS  PubMed  Google Scholar 

  • Rataj K, Simpson GG (2014) Message ends: RNA 3′ processing and flowering time control. J Exp Bot 65:353–363

    Article  CAS  PubMed  Google Scholar 

  • Reeves PH, Murtas G, Dash S, Coupland G (2002) Early in short days 4, a mutation in Arabidopsis that causes early flowering and reduces the mRNA abundance of the floral repressor FLC. Development 129:5349–5361

    Article  CAS  PubMed  Google Scholar 

  • Ripoll JJ, Ferrándiz C, Martínez-Laborda A, Vera A (2006) PEPPER, a novel K-homology domain gene, regulates vegetative and gynoecium development in Arabidopsis. Dev Biol 289:346–359

    Article  PubMed  Google Scholar 

  • Ripoll JJ, Rodríguez-Cazorla E, González-Reig S, Andújar A, Alonso-Cantabrana H, Perez-Amador MA, Carbonell J, Martínez-Laborda A, Vera A (2009) Antagonistic interactions between Arabidopsis K-homology domain genes uncover PEPPER as a positive regulator of the central floral repressorFLOWERING LOCUS C. Dev Biol 333:251–262

    Article  CAS  PubMed  Google Scholar 

  • Schomburg FM, Patton DA, Meinke DW, Amasino RM (2001) FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs. Plant Cell 13:1427–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson GG (2004) The autonomous pathway: epigenetic and posttranscriptional gene regulation in the control of Arabidopsis flowering time. Curr Opin Plant Biol 7:570–574

    Article  CAS  PubMed  Google Scholar 

  • Simpson GG, Dijkwel PP, Quesada V, Henderson I, Dean C (2003) FY is an RNA 3′ end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell 113:777–787

    Article  CAS  PubMed  Google Scholar 

  • Son GH, Park BS, Song JT, Seo HS (2014) FLC-mediated flowering repression is positively regulated bysumoylation. J Exp Bot 65:339–351

    Article  CAS  PubMed  Google Scholar 

  • Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68:2013–2037

    Article  CAS  PubMed  Google Scholar 

  • Veley KM, Michaels SD (2008) Functional redundancy and new roles for genes of the autonomous floral-promotion pathway. Plant Physiol 147:682–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villajuana-Bonequi M, Elrouby N, Nordström K, Griebel T, Bachmair A, Coupland G (2014) Elevated salicylic acid levels conferred by increased expression of ISOCHORISMATE SYNTHASE 1 contribute to hyperaccumulation of SUMO1 conjugates in the Arabidopsis mutant early in short days 4. Plant J 79:206–219

    Article  CAS  PubMed  Google Scholar 

  • Wang CX, Tian Q, Hou ZL, Mucha M, Aukerman M, Olsen OA (2007) The Arabidopsis thaliana AT PRP39-1 gene, encoding a tetratricopeptide repeat protein with similarity to the yeast pre-mRNA processing protein PRP39, affects flowering time. Plant Cell Rep 26:1357–1366

    Article  CAS  PubMed  Google Scholar 

  • Xing D, Zhao H, Xu R, Li QQ (2008) Arabidopsis PCFS4, a homologue of yeast polyadenylation factor Pcf11p, regulates FCA alternative processing and promotes flowering time. Plant J 54:899–910

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Liang D, Liu H, Zheng G (2010) FLC: a key regulator of flowering time in Arabidopsis. Russ J Plant Physiol 57:177–185

    Google Scholar 

  • Yoo SK, Lee JS, Ahn JH (2006) Overexpression of AGAMOUS-LIKE 28 (AGL28) promotes flowering by upregulating expression of floral promoters within the autonomous pathway. Biochem Biophys Res Commun 348:929–936

    Article  CAS  PubMed  Google Scholar 

  • Yu CW, Liu XC, Luo M, Chen CY, Lin XD, Tian G, Lu Q, Cui YH, Wu KQ (2011) HISTONE DEACETYLASE6 interacts with FLOWERINGLOCUS D and regulates flowering in Arabidopsis. Plant Physiol 156:173–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai H, Ning W, Wu H, Zhang X, Lü S, Xia Z (2016) DNA-binding protein phosphatase AtDBP1 acts as a promoter of flowering in Arabidopsis. Planta 243:623–633

    Article  CAS  PubMed  Google Scholar 

  • Zhang YN, Zhou YP, Chen QH, Huang XL, Tian CE (2014) Molecular basis of flowering time regulation in Arabidopsis. Chin Bull Bot 49:469–482

    Article  CAS  Google Scholar 

  • Zhong X, Du J, Hale CJ, Gallego-Bartolome J, Feng S, Vashisht A, Chory J, Wohlschlegel J, Patel D, Jacobsen S (2014) Molecular mechanism of action of plant DRM de novo DNA methyltransferases. Cell 157:1050–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Zhao HF, Ren GD, Yu XF, Cao SQ, Kuai BK (2005) Characterization of a novel developmentally retarded mutant (drm1) associated with the autonomous flowering pathway in Arabidopsis. Cell Res 15:133–140

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 30570151 and 30870212), the Science and Technology Planning Project of Guangzhou Municipality (Nos. 201504281716332) and the Science and Technology Planning Project of the Education Bureau of Guangzhou Municipality (No. 12A001G) to Dr. Chang-En Tian.

Author’s contribution

TCE planned and designed the work and wrote some parts. CJZ drawn the figures and wrote some parts. ZYP wrote some parts. LTX and XCP contributed critically to the improvement and editing the manuscript. All authors contributed to improving the paper and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-En Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, JZ., Zhou, YP., Lv, TX. et al. Research progress on the autonomous flowering time pathway in Arabidopsis . Physiol Mol Biol Plants 23, 477–485 (2017). https://doi.org/10.1007/s12298-017-0458-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-017-0458-3

Keywords

Navigation