Skip to main content
Log in

A bentazone-resistant mutant of cyanobacterium, Synechococcus elongatus PCC7942 adapts different strategies to counteract on bromoxynil- and salt-mediated oxidative stress

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

A bentazone-resistant mutant of Synechococcus elongatus PCC7942, called Mu2, tolerated elevated NaCl concentrations. As bentazone and bromoxynil exhibit similar mechanism of action, we investigated whether the mutant also toleratedbromoxynil and found it to be true. The line of investigation was then whether the acclimation strategy for the three stressors, bentazone, bromoxynil and NaCl was same or different. The cellular contents of malondialdehyde, hydrogen peroxide and superoxide increased in wild type strain following all the treatments suggesting their toxicities due to oxidative response. Notwithstanding, there were apparently different anti-oxidative measures pertaining to the herbicide and salinity stress. Glutathione contents and activities of superoxide dismutase, catalase-peroxidase, glutathione S-transferase and glutathione reductase decreased under NaCl, whereas bromoxynil affected only glutathione S-transferase reductase. Moreover, in-gel assays revealed that bromoxynil promoted appearance of isozymes of catalase-peroxidase, while NaCl induced such response only for superoxide dismutase. On the other hand, in Mu2, glutathione peroxidase-reductase and glutathione showed upward trend after bromoxynil exposure, whereas NaCl raised peroxidase and superoxide dismutase. Proteome comparison revealed peroxiredoxin Q to be highly expressed in wild type strain under bromoxynil, whereas NaCl favoured flavodoxin over-expression. Their amounts were already high in Mu2. We suggest that Mu2 acclimatized to bromoxynil in a manner similar to bentazone by upgrading peroxiredoxin Q and glutathione peroxidase-reductase. Conversely, for NaCl it devised another mechanism involving peroxidase and superoxide dismutase, and flavodoxin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  • Bagchi SN, Bitz T, Pistorius EK, Michel K-P (2007) A Synechococcus elongatus PCC7942 mutant with a higher tolerance toward the herbicide bentazone also confers resistance to sodium chloride stress. Photosynth Res 92:87–101

    Article  PubMed  CAS  Google Scholar 

  • Belden JB, Gilliom RJ, Martin JD, Lydy MJ (2007) Relative toxicity and occurrence patterns of perticide mixtures in streams draining agricultural watersheds dominated by corn and soybean production. Integr Environ Assess Manag 3:90–100

    Article  PubMed  CAS  Google Scholar 

  • Bhargava P, Mishra Y, Srivastava AK, Ara A, Rai LC (2006) Preliminary analysis of cuprome of Anabaena doliolum using two-dimensional gel electrophoresis. Curr Sci 91:1520–1523

    CAS  Google Scholar 

  • Callieri C (2007) Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshw Rev 1:1–28

    Google Scholar 

  • Das PK, Bagchi SN (2010) Bentazone and bromoxynil induce H+ and H2O2 accumulation, and inhibit photosynthetic O2 evolution in Synechococcus elongatus PCC7942. Pestic Biochem Physiol 97:256–261

    Article  CAS  Google Scholar 

  • Das PK, Bagchi SN (2011) Role of bacterioferritin comigratory protein and glutathione peroxidase-reductase system in promoting bentazone tolerance in a mutant of Synechococcus elongatus PCC7942. Protoplasma 249:65–74

    Article  PubMed  Google Scholar 

  • DeLorenzo ME, Danese LE, Baird TD (2011) Influence of increasing temperature and salinity on herbicide toxicity in estuarine phytoplankton. Environ Toxicol. doi:10.1002/tox.20726

  • Garcia-Villada L, Rebound X (2007) Induction of atrazine tolerance in a natural soil assemblage of microalgae reared in the laboratory. Ecotoxicol Environ Saf 66:102–106

    Article  PubMed  CAS  Google Scholar 

  • Griffith OW (1980) Determination of glutathione and glutathione disulphide using glutathione reductase and 2-vinyl pyridone. Anal Biochem 106:207–212

    Article  PubMed  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    PubMed  CAS  Google Scholar 

  • Hagemann M (2011) Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev 35:87–123

    Article  PubMed  CAS  Google Scholar 

  • Hagemann M, Jeanjean R, Fulda S, Havaux M, Joset F, Erdmann N (1999) Flavodoxin accumulation contributes to enhanced cyclic electron flow around photosystem I in salt-stressed cells of Synechocystis sp. Strain PCC 6803. Physiol Plant 105:670–678

    Article  CAS  Google Scholar 

  • Halliwell B, Foyer CH (1978) Properties and physical function of a glutathione reductase purified from spinach leaves by affinity chromatography. Planta 139:9–17

    Article  CAS  Google Scholar 

  • Hirsch P, Overrein L, Alexander M (1961) Formation of nitrite and nitrate by actinomycetes and fungi. J Bacteriol 82:442–448

    PubMed  CAS  Google Scholar 

  • Hopkins J, Tudhope GR (1973) Glutathione peroxidase in human red cells in health and diseases. Br J Haematol 25:563–575

    Article  PubMed  CAS  Google Scholar 

  • Kang KS, Lim CJ, Han TJ, Kim JC, Jin CD (1999) Changes in the isozyme composition of antioxidant enzymes in response to aminotriazole in leaves of Arabidopsis thaliana. J Plant Biol 42:187–193

    Article  CAS  Google Scholar 

  • Knauer K, Leimgruber A, Hommen U, Knauert S (2010) Co-tolerance of phytoplankton communities to photosynthesis II inhibitors. Aquat Toxicol 96:256–263

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lee MY, Shin HW (2003) Cadmium-induced changes in antioxidant enzymes from the marine alga Nannochloropsis oculata. J Appl Phycol 15:13–19

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Mackinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140:315–322

    CAS  Google Scholar 

  • Manandhar-Shrestha K, Arad SM, Vonshak A (2009) DCMU-resistance mutation confers resistance to high salt stress in the red microalga Porphyridium sp. (Rhodophyta). Eur J Phycol 44:339–346

    Article  CAS  Google Scholar 

  • Michel KP, Berry S, Hifney A, Pistorius EK (2003) Adaptation to iron deficiency: a comparison between the cyanobacterium Synechococcus elongatus PCC7942 wild-type and a DpsA-free mutant. Photosynth Res 75:71–84

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Zilinskas BA (1993) Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of Nitroblue tetrazolium. Anal Biochem 212:540–546

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Naito K, Yokota N, Sugita C, Sugita M (2007) A cyanobacterial non-coding RNA, Yfr1, is required for growth under multiple stress conditions. Plant Cell Physiol 48:1309–1318

    Article  PubMed  CAS  Google Scholar 

  • Nimbal CI, Yerkes CN, Weston LA, Weller SC (1996) Herbicidal activity and site of action of the natural product sorgoleone. Pestic Biochem Physiol 54:73–83

    Article  CAS  Google Scholar 

  • Porsbring T, Backhaus T, Johansson P, Kuylenstierna M, Blanck H (2010) Mixture toxicity from photosystem II inhibitors on microalgal community succession is predictable by concentration addition. Environ Toxicol Chem 29:2806–2813

    Article  PubMed  CAS  Google Scholar 

  • Powles SB, Yu Q (2010) Evolution in action: plants resistant to herbicides. Annu Rev Plant Biol 61:317–347

    Article  PubMed  CAS  Google Scholar 

  • Ray S, Bagchi SN (2001) Nutrients and pH regulate algicide accumulation in cultures of the cyanobacterium Oscillatoria laetevirens. New Phytol 149:455–460

    Article  CAS  Google Scholar 

  • Ricci G, Bello ML, Caccuri AM, Galiazzo F, Federici G (1984) Detection of glutathione transferase activity on polyacrylamide gels. Anal Biochem 143:226–230

    Article  PubMed  CAS  Google Scholar 

  • Tripathi BN, Mehta SK, Amar A, Gaur JP (2006) Oxidative stress in Scenedesmus sp. during short- and long- term exposure to Cu2+ and Zn2+. Chemosphere 62:538–544

    Article  PubMed  CAS  Google Scholar 

  • Tripathi BN, Bhatt I, Dietz K-J (2009) Peroxiredoxins: a less studied component of hydrogen peroxide detoxification in photosynthetic organisms. Protoplasma 235:3–15

    Article  PubMed  CAS  Google Scholar 

  • Vassilakaki M, Pflugmacher S (2008) Oxidative stress response of Synechocystis sp. (PCC 6803) due to exposure to microcystin-LR and cell-free cyanobacterial crude extract containing microcystin-LR. J Appl Phycol 20:219–225

    Article  CAS  Google Scholar 

  • Yang Y, Han C, Liu Q, Lin B, Wang J (2008) Effect of drought and low light on growth and enzymatic antioxidant system of Picea asperata seedlings. Acta Physiol Plant 30:433–440

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Head of the Department of Biological Sciences, Rani Durgavati University, Jabalpur (India) for laboratory facilities and the Department of Science & Technology (Govt. of India), New Delhi for financial assistance vide project no SR/SO/PS-28/06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suvendra Nath Bagchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagchi, S.N., Das, P.K., Banerjee, S. et al. A bentazone-resistant mutant of cyanobacterium, Synechococcus elongatus PCC7942 adapts different strategies to counteract on bromoxynil- and salt-mediated oxidative stress. Physiol Mol Biol Plants 18, 115–123 (2012). https://doi.org/10.1007/s12298-012-0111-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-012-0111-0

Keywords

Navigation