Skip to main content

Advertisement

Log in

The lack of LHCII proteins modulates excitation energy partitioning and PSII charge recombination in Chlorina F2 mutant of barley

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Analysis of the partitioning of absorbed light energy within PSII into fractions utilized by PSII photochemistry (ØPSII), thermally dissipated via ΔpH-and zeaxanthin-dependent energy quenching (ØNPQ) and constitutive non-photochemical energy losses (ØNO) was performed in wild type and F2 mutant of barley. The estimated energy partitioning of absorbed light to various pathways indicated that the fraction of ØPSII was slightly higher, while the proportion of thermally dissipated energy through ØNPQ was 38% lower in F2 mutant than in WT. In contrast, ØNO, i.e. the fraction of absorbed light energy dissipated by additional quenching mechanism(s) was 34% higher in F2 mutant. The increased proportion of ØNO correlated with narrowing the temperature gap (ΔT M) between S2/3QB− and S2QA− charge recombinations in F2 mutant as revealed by thermoluminescence measurements. We suggest that this would result in increased probability for an alternative non-radiative P680+QA− radical pair recombination pathway for energy dissipation within the reaction centre of PSII (reaction center quenching) and that this additional quenching mechanism might play an important role in photoprotection when the capacity for the primary, zeaxanthin-dependent non-photochemical quenching (ØNPQ) and state transitions pathways are restricted in the absence of LHCII polypeptides in F2 mutant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LHCII:

the major Chl a/b pigment-protein complex associated with PSII

PSI:

photosystem I

PSII:

photosystem II

QA :

primary electron-accepting quinone in PSII reaction centres

QB :

secondary electron-accepting quinone in PSII reaction centers

NPQ:

non-photochemical quenching

qL:

photochemical quenching

TL:

thermoluminescence

TM :

temperature maximum of the TL emission peak

References

  • Allen, J.F. (1995). Thylakoid protein phosphorylation, state 1-state 2 transitions, and photosystem stoicheometry adjustment: redox control at multiple levels of gene expression. Physiol. Plant., 93: 196–205.

    Article  CAS  Google Scholar 

  • Allen K.D. and Staehelin L.A. (1991). Resolution of 16 to 20 chlorophyll-protein complexes using a low ionic strength native green gel system. Anal. Biochem., 194: 214–222.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, J.M. (1986). Photoregulation of the composition, function and structure of thylakoid membranes. Annu. Rev. Plant Physiol., 37: 93–136.

    Article  CAS  Google Scholar 

  • Aro, E.-M., Virgin, I. and Andersson, B. (1993). Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim. Biophys. Acta, 1143: 113–134.

    Article  PubMed  CAS  Google Scholar 

  • Bassi, R., Pineau, B., Dainese, P. and Marquardt, J. (1993). Carotenoid-binding proteins of photosystem II. Eur. J. Biochem., 212: 297–303.

    Article  PubMed  CAS  Google Scholar 

  • Bossmann, B., Knoetzel, J. and Jansson, S. (1997). Screening of chlorina mutants of barley (Hordeum vulgare L.) with antibodies against light-harvesting proteins of PS I and PS II: Absence of specific antenna proteins. Photosynth. Res., 52: 127–136.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B. and Adams, W.W. (1992). Photoprotection and other responses of plants to high light stress. Annu. Rev. Plant Physiol. Plant Mol. Biol., 43: 599–626.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B., Adams III, W.W., Barker, D.H., Logan, B.A., Bowling, R.D. and Verhoeven, A.S. (1996). Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol. Plant., 98: 253–264.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B., Adams, W.W., Ebber, V. and Logan, B.A. (1999). Ecophysiology of the xanthophyll cycle. In: Frank HA, Young AJ, Britton G, Cogdell RJ, eds. Advances in Photosynthesis. The Photochemistry of Carotenoids, Vol. 8, Kluwer Academic Publishers, Dordrecht, 245–269.

    Google Scholar 

  • Demmig, B., Winter, K., Krüger, A. and Czygan, F.-C. (1987). Photoinhibition and zeaxanthin formation in intact leaves: a possible role of the xanthophyll cycle in the dissipation of excess light. Plant Physiol., 84: 218–224.

    Article  PubMed  CAS  Google Scholar 

  • DeVault, D. and Govindjee (1990). Photosynthetic glow peaks and their relationship with the free-energy changes. Photosynth. Res., 24: 175–181.

    CAS  Google Scholar 

  • Falk, S., Krol, M., Maxwell, D.P., Rezansoff, D.A., Gray, G.R. and Huner, N.P.A. (1994). Changes in in vivo fluorescence quenching in rye and barley as a function of reduced PSII light harvesting antenna size. Physiol. Plant., 91: 551–558.

    Article  CAS  Google Scholar 

  • Finazzi, G., Johnson, G.N., Dall’Osto, L., Joliot, P., Wollman, F.-A. and Bassi, R. (2004). A zeaxanthin-independent nonphotochemical quenching mechanism localized in the photosystem II core complex. Proc. Natl. Acad. Sci. USA, 101: 12375–12380.

    Article  PubMed  CAS  Google Scholar 

  • Fork, D.C. and Satoh, K. (1986). The control by state transitions of the distribution of excitation energy in photosynthesis. Annu. Rev. Plant Physiol., 37: 335–361.

    Article  CAS  Google Scholar 

  • Ghirardi, M.L., McCauley, S.W. and Melis, A. (1986). Photochemical apparatus organization in the thylakoid membrane of Hordeum vulgare wild type and chlorophyll b-less chlorina f2 mutant, Biochim. Biophys. Acta, 851: 331–339.

    Article  CAS  Google Scholar 

  • Gilmore, A.M., Hazlett, T.L., Debrunner, P.G. and Govindjee (1996). Photosystem II chlorophyll a fluorescence lifetimes and intensity are independent of the antenna size differences between barley wild-type and chlorine mutants: Photochemical quenching and xanthophylls cycle-dependent nonphotochemical quenching of fluorescence. Photosynth. Res., 48: 171–187.

    Article  CAS  Google Scholar 

  • Haldrup, A., Jensen, P.E., Lunde, C. and Scheller, H.V. (2001). Balance of power: a view of the mechanism of photosynthetic state transitions. Trends Plant Sci., 6: 301–305.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, M.A., Nemson, J.A. and Melis, A. (1993). Assembly of the chlorophyll a/b light-harvesting complex of barley (Hordeum vulgare L.): Immunochemical analysis of chlorophyll b-less and chlorophyll b-deficient mutants. Photosynth. Res., 38: 141–151.

    Article  CAS  Google Scholar 

  • Havaux, M. and Tardy, F. (1997). Thermostability and photostability of photosystem II in leaves of the Chlorina-f2 barley mutant deficient in light-harvesting chlorophyll a/b protein complexes. Plant Physiol., 113: 913–923.

    PubMed  CAS  Google Scholar 

  • Hendrickson, L., Furbank, R.T. and Chow, W.S. (2004). A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. Photosynth. Res., 82: 73–81.

    Article  PubMed  CAS  Google Scholar 

  • Homann, P.H. (1999). Reliability of photosystem II thermoluminescence measurements after sample freezing: Few artifacts with photosystem II membranes but gross distortions with certain leaves. Photosynth. Res., 62: 219–229.

    Article  CAS  Google Scholar 

  • Horton, P., Ruban, A.V. and Walters, R.G. (1996). Regulation of light harvesting in green plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 47: 655–684.

    Article  PubMed  CAS  Google Scholar 

  • Huner, N.P.A., Öquist, G. and Sarhan, F. (1998). Energy balance and acclimation to light and cold. Trends Plant Sci., 3: 224–230.

    Article  Google Scholar 

  • Hurry, V., Anderson, J.M., Chow, W.S. and Osmond, C.B. (1997). Accumulation of zeaxanthin in abscisic acid-deficient mutants of Arabidopsis does not affect chlorophyll fluorescence quenching or sensitivity to photoinhibition in vivo. Plant Physiol., 113: 639–648.

    PubMed  CAS  Google Scholar 

  • Inoue, Y. (1996). Photosynthetic thermoluminescence as a simple probe of photosystem II electron transport. In: Biophysical Techniques in Photosynthesis (Eds. Amesz, J. and Hoff, A.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 93–107.

    Google Scholar 

  • Ivanov, A.G., Sane, P., Hurry, V., Król, M., Sveshnikov, D., Huner N.P.A. and Öquist, G. (2003). Low temperature modulation of the redox properties of the acceptor side of photosystem II: photoprotection through reaction centre quenching of excess energy. Physiol. Plant.: 119: 376–383.

    Article  CAS  Google Scholar 

  • Ivanov, A.G., Krol, M., Apostolova, E.L., Morgan-Kiss, R.M., Naydenova, N., Huner, N.P.A. and Sane, P.V. (2005). Oligomerization state of LHCII modulates the redox properties of the acceptor side of photosystem II in Costata-2/133 mutant of pea. Physiol. Mol. Biol. Plants., 11: 199–207.

    CAS  Google Scholar 

  • Ivanov, A.G., Krol, M., Maxwell, D.P. and Huner, N.P.A. (1995). Abscisic acid induced protection against photoinhibition of PSII correlates with enhanced activity of the xanthophyll cycle. FEBS Lett., 371: 61–64.

    Article  PubMed  CAS  Google Scholar 

  • Ivanov, A.G., Sane, P.V., Zeinalov, Y., Malmberg, G., Gardeström, P., Huner, N.P.A. and Öquist, G. (2001). Photosynthetic electron transport adjustments in overwintering Scots pine (Pinus sylvestris L.). Planta, 213: 575–585.

    Article  PubMed  CAS  Google Scholar 

  • Ivanov, A.G., Sane, P.V., Krol, M., Gray, G.R., Balseris, A., Savitch, L.V., Öquist, G. and Hüner, N.P.A. (2006). Acclimation to temperature and irradiance modulates PSII charge recombination. FEBS Lett., 580: 2797–2802.

    Article  PubMed  CAS  Google Scholar 

  • Janda, T., Szalai, G., Papp, N., Pal, M. and Paldi, E. (2004). Effects of freezing on thermoluminescence in various plant species. Photochem. Photobiol., 80: 525–530.

    Article  PubMed  CAS  Google Scholar 

  • Kramer, D.M., Johnson, G., Kiirats, O. and Edwards G.E. (2004). New fluorescence parameters for the determination of QA redox state and excitation energy fluxes, Photosynth. Res., 79: 209–218.

    Article  PubMed  CAS  Google Scholar 

  • Krause, G.H. (1988). Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol. Plant., 74: 566–574.

    Article  CAS  Google Scholar 

  • Krause, G.H. and Weis, E. (1984). Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals. Photosynth. Res., 5: 139–157.

    Article  CAS  Google Scholar 

  • Krol, M., Spangford, M.D., Huner, N.P.A., Oquist, G., Gustafsson, P. and Jansson, S. (1995). Chlorophyll a/b-binding proteins, pigment conversions, and early light-induced proteins in a chlorophyll b-less barley mutant. Plant Physiol., 107: 873–883.

    Article  PubMed  CAS  Google Scholar 

  • Krol, M., Ivanov, A.G., Jansson, S., Kloppstech, K. and Huner, N.P.A. (1999). Greening under high light or cold temperature affects the level of xanthophyll-cycle pigments, early light-inducible proteins, and light-harvesting polypeptides in wild-type barley and the chlorina f2 mutant. Plant Physiol., 120: 193–204.

    Article  PubMed  CAS  Google Scholar 

  • Leverentz, J.W., Öquist, G. and Wingsle, G. (1992). Photosynthesis and photoinhibition in leaves of chlorophyll b-less barley in relation to absorbed light. Physiol. Plant., 85: 495–502.

    Article  Google Scholar 

  • Matsubara, S. and Chow, W.S. (2004). Populations of photoinactivated photosystem II reaction centers characterized by chlorophyll a fluorescence lifetime in vivo. Proc. Natl. Acad. Sci. U.S.A., 101: 18234–18239.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, R.M., Ivanov, A.G., Priscu, J.C., Maxwell, D.P. and Huner, N.P.A. (1998). Structure and composition of the photochemical apparatus of the Antarctic green alga, Chlamydomonas subcaudata. Photosynth. Res., 56: 303–314

    Article  CAS  Google Scholar 

  • Niyogi, K.K. (1999). Photoprotection revisited: Genetic and molecular approaches. Annu. Rev. Plant Physiol. Plant Mol. Biol., 50: 333–359.

    Article  PubMed  CAS  Google Scholar 

  • Sane, P. V. (2004). Thermoluminescence: A technique for probing photosystem II. In: Photosynthesis Research Protocols (Ed Carpentier, R.), Humana Press, Totowa, NJ, USA pp. 229–248.

    Chapter  Google Scholar 

  • Sane, P.V. and Rutherford, A.W. (1986). Thermoluminescence from photosynthetic membranes. In: Light Emission by Plants and Bacteria (Eds Govindjee, Amesz, J. and Fork, D. C.), Academic Press, Orlando pp. 329–360.

    Google Scholar 

  • Sane, P.V., Ivanov, A.G., Sveshnikov, D., Huner, N.P.A. and Öquist, G. (2002). A transient exchange of the photosystem II reaction center protein D1:1 with D1:2 during low temperature stress of Synechococcus sp. PCC 7942 in the light lowers the redox potential of QB. J. Biol. Chem., 277: 32739–32745.

    Article  PubMed  CAS  Google Scholar 

  • Sane, P.V., Ivanov, A.G., Hurry, V., Huner, N.P.A. and Öquist, G. (2003). Changes in the redox potential of primary and secondary electron-accepting quinones in photosystem II confer increased resistance to photoinhibition in low-temperature-acclimated Arabidopsis. Plant Physiol., 132: 2144–2151.

    Article  PubMed  CAS  Google Scholar 

  • Schreiber, U., Shliwa, W. and Bilger, U. (1986). Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorimeter. Photosynth. Res., 10: 51–62.

    Article  CAS  Google Scholar 

  • Simpson, D.J. (1979). Freeze-fracture studies on barley plastid membranes. III. Location of the light-harvesting chlorophyll-protein. Carlsberg Res. Commun., 44: 305–336.

    Article  CAS  Google Scholar 

  • Terao, T. and Katoh, S. (1996). Antenna sizes of photosystem I and photosystem II in chlorophyll b-deficient mutant of rice. Evidence for an antenna function of photosystem II centers that are inactive in electron transport. Plant Cell Physiol., 37: 307–312.

    CAS  Google Scholar 

  • Thornber, J.P. and Highkin H. (1974). Composition of the photosynthetic apparatus of normal barley leaves and a mutant lacking chlorophyll b. Eur. J. Biochem., 41: 109–116.

    Article  PubMed  CAS  Google Scholar 

  • van Kooten, O. and Snel, J.F.H. (1990). The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth. Res., 25: 147–150.

    Article  Google Scholar 

  • Van Grondelle, R., Dekker, J.P., Gillbro, T. and Sundstrom, V. (1994). Energy-transfer and trapping in photosynthesis. Biochim. Biophys. Acta, 1187: 1–65.

    Article  CAS  Google Scholar 

  • Vass, I. and Govindjee (1996). Thermoluminescence from the photosynthetic apparatus. Photosynth. Res., 48:117–126.

    Article  CAS  Google Scholar 

  • Wentworth, M., Ruban, A.V. and Horton, P. (2004). The functional significance of the monomeric and trimeric states of the photosystem II light harvesting complexes. Biochemistry, 43: 501–509.

    Article  PubMed  CAS  Google Scholar 

  • Zulfigarov, I.S., Ham, O.-K., Misra, S.R., Kim, J.-Y., Nath, K., Koo, H.-Y., Kim, H.-S. and Lee, C.-H. (2007). Dependence of reaction center-type energy-dependent quenching on photosystem II antenna size. Biochim. Biophys. Acta, 1767: 773–780.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. A. Huner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, A.G., Krol, M., Zeinalov, Y. et al. The lack of LHCII proteins modulates excitation energy partitioning and PSII charge recombination in Chlorina F2 mutant of barley. Physiol Mol Biol Plants 14, 205–215 (2008). https://doi.org/10.1007/s12298-008-0020-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-008-0020-4

Key words

Navigation