Skip to main content
Log in

Photoprotective capacity of non-photochemical quenching in plants acclimated to different light intensities

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Arabidopsis plants grown at low light were exposed to a gradually increasing actinic light routine. This method allows for the discerning of the photoprotective component of NPQ, pNPQ and photoinhibition. They exhibited lower values of Photosystem II (PSII) yield in comparison to high-light grown plants, and higher calculated dark fluorescence level (Fo calc.) than the measured one (Fo act.). As a result, in low-light grown plants, the values of qP measured in the dark appeared higher than 1. Normally, Fo act. and Fo calc. match well at moderate light intensities but Fo act. becomes higher at increasing intensities due to reaction centre (RCII) damage; this indicates the onset of photoinhibition. To explain the unusual increase of qP in the dark in low-light grown plants, we have undertaken an analysis of PSII antenna size using biochemical and spectroscopic approaches. Sucrose gradient separation of thylakoid membrane complexes and fast fluorescence induction experiments illustrated that the relative PSII cross section does not increase appreciably with the rise in PSII antenna size in the low-light grown plants. This suggests that part of the increased LHCII antenna is less efficiently coupled to the RCII. A model based upon the existence of an uncoupled population LHCII is proposed to explain the discrepancies in calculated and measured values of Fo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahn TK, Avenson TJ, Ballottari M, Cheng YC, Niyogi KK, Bassi R, Fleming GR (2008) Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science 320:794–797

    Article  CAS  PubMed  Google Scholar 

  • Amunts A, Toporik H, Borovikova A, Nelson N (2010) Model of plant photosystem I structure determination and improved and biogenesis: membrane transport, structure, function. J Biol Chem 285:3478–3486

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Anderson JM, Chow WS, Goodchild DJ (1988) Thylakoid membrane organisation in sun/shade acclimation. Aust J Plant Physiol 15:11–26

    Article  Google Scholar 

  • Aro E-M, McCaffery S, Anderson JM (1993) Photoinhibition and D1 protein degradation in peas acclimated to different growth irradiances. Plant Physiol 130:835–843

    Google Scholar 

  • Bailey S, Horton P, Walters RG (2004) Acclimation of Arabidopsis thaliana to the light environment: the relationship between photosynthetic function and chloroplast composition. Planta 218:793–802

    Article  CAS  PubMed  Google Scholar 

  • Bassi R, Dainese P (1992) A supramolecular light-harvesting complex from chloroplast photosystem-II membranes. Eur J Biochem 204:317–326

    Article  CAS  PubMed  Google Scholar 

  • Bassi R, Høyer-Hansen G, Barbato R et al (1987) Chlorophyll-proteins of the photosystem II antenna system. J Biol Chem 27:13333–13341

    Google Scholar 

  • Belgio E, Johnson MP, Jurić S, Ruban AV (2012) Higher plant photosystem II light-harvesting antenna, not the reaction center, determines the excited-state lifetime-both the maximum and the nonphotochemically quenched. Biophys J 102:2761–2771

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Belgio E, Kapitonova E, Chmeliov E, Duffy CDP, Ungerer P, Valkunas L, Ruban AV (2014) Economic photoprotection in Photosystem II that retains a complete light harvesting system with slow energy traps. Nat Commun 5:4433

    Article  CAS  PubMed  Google Scholar 

  • Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504

    Article  PubMed  Google Scholar 

  • Björkman O, Demmig-Adams B (1994) Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer-Verlag, Berlin, pp 17–47

    Google Scholar 

  • Boekema EJ, Hankamer B, Bald D, Kruip J, Nield J, Boonstra AF, Barber J, Rögner M (1995) Supramolecular structure of the photosystem II complex from green plants and cyanobacteria. Proc Natl Acad Sci 92:175–179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boekema EJ, van Roon H, Dekker JP (1998) Specific association of photosystem II and light-harvesting complex II in partially solubilized photosystem II membranes. FEBS Lett 424:95–99

    Article  CAS  PubMed  Google Scholar 

  • Briantais J-M, Vemotte C, Picaud M, Krause GH (1979) A quantitative study of the slow decline of chlorophyll a fluorescence in isolated chloroplasts. Biochim Biophys Acta 548:128–138

    Article  CAS  PubMed  Google Scholar 

  • Butler WL (1980) Energy transfer between photosystem II units in a connected package model of the photochemical apparatus of photosynthesis (photochemical model). Proc Natl Acad Sci USA 77:4697–4701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Caffarri S, Broess K, Croce R, van Amerongen H (2009) Excitation energy transfer and trapping in higher plant photosystem II complexes with different antenna sizes. Biophys J 100:2094–2103

    Article  Google Scholar 

  • Caffarri S, Croce R, Breton J, Bassi R (2001) The major antenna complex of photosystem II has a xanthophyll binding site not involved in light harvesting. J Biol Chem 276:35924–35933

    Article  CAS  PubMed  Google Scholar 

  • Chazdon RL, Pearcy RW (1991) The importance of sunflecks for forest understory plants. Bioscience 41:760–766

    Article  Google Scholar 

  • Chow WS, Melis A, Anderson JM (1990) Adjustments of photosystem stoichiometry in chloroplasts improve the quantum efficiency of photosynthesis. Proc Natl Acad Sci 87:7502–7506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dall’Osto L, Lico C, Alric J, Giuliano G, Havaux M, Bassi R (2006) Lutein is needed for efficient chlorophyll triplet quenching in the major LHCII antenna complex of higher plants and effective photoprotection in vivo under strong light. BMC Plant Biol 6:32

    Article  PubMed Central  PubMed  Google Scholar 

  • De Bianchi S, Dall’Osto L, Tognon G, Morosinotto T, Bassi R (2008) Minor antenna proteins CP24 and CP26 affect the interactions between photosystem II subunits and the electron transport rate in grana membranes of Arabidopsis. Plant Cell 20:1012–1028

    Article  PubMed Central  PubMed  Google Scholar 

  • De Las Rivas J, Andersson B, Barber J (1992) Two sites of primary degradation of the D1-protein induced by acceptor or donor side photo-inhibition in photosystem II core complexes. FEBS Lett 301:246–252

    Article  Google Scholar 

  • De Las Rivas J, Shipton CA, Ponticos M, Barber J (1993) Acceptor side mechanism of photoinduced proteolysis of the D1 protein in photosystem II reaction centers. Biochemistry 32:6944–6950

    Article  Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection: a role for the xanthophyll zeaxanthin. Biochim Biophys Acta 1020:1–24

    Article  CAS  Google Scholar 

  • Duffy CDP, Chmeliov J, Macernis M, Sulskus J, Valkunas L, Ruban AV (2013) Light-harvesting processes in the dynamic photosynthetic antenna. J Phys Chem B 15:18752–18770

    CAS  Google Scholar 

  • Engelmann ECM, Zucchelli G, Garlaschi FM, Casazza AP, Jennings RC (2005) The effect of outer antenna complexes on the photochemical trapping rate in barley thylakoid Photosystem II. BBA 1706:276–286

    CAS  PubMed  Google Scholar 

  • Epron D, Dreyer E, Bréda N (1992) Photosynthesis of oak trees (Quercus petraea (Matt) Liebl.) during drought stress under field conditions: diurnal course of net CO2 assimilation and photochemical efficiency of photosystem II. Plant, Cell Environ 15:809–820

    Article  CAS  Google Scholar 

  • Farber A, Young AJ, Ruban AV, Horton P, Jahns P (1997) Dynamics of xanthophyll cycle activity in different antenna subcomplexes in the photosynthetic membranes of higher plants. Plant Physiol 115:1609–1618

  • Frank HA, Chynwat V, Desamero RZB, Farhoosh R, Erickson J, Bautista J (1997) On the photophysics and photochemical properties of carotenoids and their role as light-harvesting pigments in photosynthesis. Pure Appl Chem 69:2117–2124

    Article  CAS  Google Scholar 

  • Gamon JA, Pearcy RW (1989) Leaf movement, stress avoidance and photosynthesis in Vitis californica. Oecologia 79:475–481

    Article  Google Scholar 

  • Gilmore AM, Mohanty N, Yamamoto HY (1994) Epoxidation of zeaxanthin and antheraxanthin reverses nonphotochemical quenching of photo-system-II chlorophyll-a fluorescence in the presence of trans-thylakoid delta-pH. FEBS Lett 350:271–274

    Article  CAS  PubMed  Google Scholar 

  • Goral TK, Johnson MP, Duffy CD, Brain AP, Ruban AV, Mullineaux CW (2012) Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis. Plant J 69:289–301

    Article  CAS  PubMed  Google Scholar 

  • Groom QJ, Baker NR (1992) Analysis of light-induced depressions of photosynthesis in leaves of a wheat crop during the winter. Plant Physiol 100:1217–1223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Havaux M, Straser RJ, Greppin H (1991) A theoretical and experimental analysis of the qP and qN coefficients of chlorophyll fluorescence quenching and their relation to photochemical and nonphotochemical events. Photosynth Res 27:41–55

    Article  CAS  PubMed  Google Scholar 

  • He J, Chee CW, Goh CJ (1996) ‘Photoinhibition’ of Heliconia under natural tropical conditions: the importance of leaf orientation for light interception and leaf temperature. Plant, Cell Environ 19:1238–1248

    Article  Google Scholar 

  • Hogewoning SW, Wientjes E, Douwstra P, Trouwborst G, van Ieperen W, Croce R, Harbinson J (2012) Photosynthetic quantum yield dynamics: from photosystems to leaves. Plant Cell 24:1921–1935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holt NE, Zigmantas D, Valkunas L, Li X-P, Niyogi KK, Flemming GR (2005) Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307:433–436

    Article  CAS  PubMed  Google Scholar 

  • Holzwarth AR, Miloslavina Y, Nilkens M, Jahns P (2009) Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence. Chem Phys Lett 483:262–267

    Article  CAS  Google Scholar 

  • Horton P, Ruban AV (1992) Regulation of photosystem II. Photosynth Res 34:375–385

    Article  CAS  PubMed  Google Scholar 

  • Horton P, Ruban AV, Wentworth M (2000) Allosteric regulation of the light harvesting system of photosystem II. Philos Trans R Soc 355:1361–1370

    Article  CAS  Google Scholar 

  • Jahns P, Holzwarth AR (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim Biophys Acta 1817:182–193

    Article  CAS  PubMed  Google Scholar 

  • Johnson MP, Goral TK, Duffy CDP, Brain APR, Mullineaux CW, Ruban AV (2011) Photoprotective energy dissipation involves the reorganization of photosystem II light harvesting complexes in the grana membranes of spinach chloroplasts. Plant Cell 23:1468–1479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson MP, Perez-Bueno ML, Zia A, Horton P, Ruban AV (2009) The zeaxanthin-independent and zeaxanthin-dependent qE components of nonphotochemical quenching involve common conformational changes within the photosystem II antenna in Arabidopsis. Plant Physiol 149:1061–1075

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson MP, Ruban AV (2010) Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation. Plant J 61:283–289

    Article  CAS  PubMed  Google Scholar 

  • Kagawa T, Sakai T, Suetsugu N, Oikawa K, Ishiguro S, Kato T, Tabata S, Okada K, Wada M (2001) Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high light avoidance response. Science 291:2138–2141

    Article  CAS  PubMed  Google Scholar 

  • Kereïche S, Kiss AZ, Kouril R, Boekema E, Horton P (2010) The PsbS protein controls the macro-organization of photosystem II complexes in the grana membranes of higher plant chloroplasts. FEBS Lett 584:754–764

    Article  Google Scholar 

  • Kouřil R, Dekker JP, Boekema EJ (2012) Supramolecular organization of photosystem II in green plants. Biochim Biophys Acta 1817:2–12

    Article  PubMed  Google Scholar 

  • Krause GH, Behrend U (1986) ΔpH-dependent chlorophyll fluorescence quenching indicating a mechanism of protection against photoinhibition of chloroplasts. FEBS Lett 200:298–302

    Article  CAS  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  • Lee HY, Hong YN, Chow WS (2001) Photoinactivation of photosystem II complexes and photoprotection by non-functional neighbours in Capsicum annuum L. leaves. Planta 212:332–342

    Article  CAS  PubMed  Google Scholar 

  • Leong TY, Anderson JM (1984a) Adaptation of the thylakoid membranes of pea chloroplasts to light intensities. 1. Study on the distribution of chlorophyll–protein complexes. Photosynth Res 5:105–115

    Article  CAS  PubMed  Google Scholar 

  • Leong TY, Anderson JM (1984b) Adaptation of the thylakoid membranes of pea chloroplasts to light intensities. 2. Regulation of electron transport capacities, electron carriers, coupling factor (CF1) activity and rates of photosynthesis. Photosynth Res 5:117–128

    Article  CAS  PubMed  Google Scholar 

  • Li X-P, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK, Buschmann C, Döll M, Fietz HJ, Bach T, Kozel U, Meier D, Rahmsdorf U (1981) Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosynth Res 2:115–141

    Article  CAS  PubMed  Google Scholar 

  • Malkin S, Armond PA, Mooney HA, Fork DC (1981) Photosystem II photosynthetic unit sizes from fluorescence induction in leaves: correlation to photosynthetic capacity. Plant Physiol 67:570–579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matsubara S, Chow W (2004) Populations of photoinhibited photosystem II reaction centers characterized by chlorophyll a fluorescence lifetime in vivo. Proc Natl Acad Sci USA 101:18234–18239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 345:659–668

    Article  Google Scholar 

  • Miloslavina Y, Wehner A, Lambrev PH, Wientjes E, Reus M, Garab G, Croce R, Holzwarth AR (2008) Far-red fluorescence: a direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching. FEBS Lett 582:3625–3631

    Article  CAS  PubMed  Google Scholar 

  • Müller MG, Lambrev P, Reus M, Wientjes E, Croce R, Holzwarth AR (2010) Singlet energy dissipation in the photosystem II light-harvesting complex does not involve energy transfer to carotenoids. ChemPhysChem 11:1289–1296

    Article  PubMed  Google Scholar 

  • Mullineaux CW, Ruban AV, Horton P (1994) Prompt heat release associated with ΔpH-dependent quenching in spinach thylakoid membranes. Biochim Biophys Acta 1185:119–123

    Article  CAS  Google Scholar 

  • Noctor G, Ruban AV, Horton P (1993) Modulation of ΔpH-dependent nonphotochemical quenching of chlorophyll fluorescence in spinach chloroplasts. Biochim Biophys Acta 1183:339–344

    Article  CAS  Google Scholar 

  • Ögren E, Sjöström M (1990) Estimation of the effect of photoinhibition on the carbon gain in leaves of a willow canopy. Planta 181:560–567

    Article  PubMed  Google Scholar 

  • Ohad I, Kyle DJ, Arntzen CJ (1984) Membrane-protein damage and repair—removal and replacement of inactivated 32-kilodalton polypeptides in chloroplast membranes. J Cell Biol 99:481–485

    Article  CAS  PubMed  Google Scholar 

  • Oxborough K, Baker NR (1997) Resolving chlorophyll a fluorescence of photosynthetic efficiency into photochemical components—calculation of qP and Fv′/Fm′ without measuring Fo′. Photosynth Res 54:135–142

    Article  CAS  Google Scholar 

  • Pessarakli M (2005) Handbook of photosynthesis II, 2nd edn. Taylor and Francis Group, Boca Raton

    Book  Google Scholar 

  • Peter GF, Thornber PJ (1991) Biochemical composition and organization of higher plant photosystem II light-harvesting pigment-proteins. J Biol Chem 266:16745–16754

    CAS  PubMed  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous-equations for assaying chlorophyll a and chlorophyll b extracted with 4 different solvents—verification of the concentration of chlorophyll standards by atomic-absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Ruban AV (2009) Plants in light. Commun Integr Biol 2:50–55

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ruban AV (2012) The photosynthetic membrane: molecular mechanisms and biophysics of light harvesting. Wiley-Blackwell, Chichester. ISBN 978-1-1199-6053-9

    Book  Google Scholar 

  • Ruban AV, Belgio E (2014) The relationship between maximum tolerated light intensity and non-photochemical chlorophyll fluorescence quenching: chloroplast gains and losses. Philos Trans R Soc Lond B 369:20130222

    Article  Google Scholar 

  • Ruban AV, Horton P (1992) Mechanism of delta pH-dependent dissipation of absorbed excitation energy by photosynthetic membranes. I. Spectroscopic analysis of isolated light harvesting complexes. Biochim Biophys Acta 1102:30–38

    Article  CAS  Google Scholar 

  • Ruban AV, Horton P (1999) The xanthophyll cycle modulates the kinetics of nonphotochemical energy dissipation in isolated light harvesting complexes, intact chloroplasts and leaves. Plant Physiol 119:531–542

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ruban AV, Johnson MP, Duffy CDP (2012) Photoprotective molecular switch in photosystem II. Biochim Biophys Acta 1817:167–181

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Murchie MH (2012) Assessing the photoprotective effectiveness of non-photochemical chlorophyll fluorescence quenching: a new approach. Biochim Biophys Acta 1817:977–982

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Solovieva S, Horton P et al (2006) Plasticity in the composition of the light harvesting antenna of higher plants preserves structural integrity and biological function. J Biol Chem 281:14981–14990

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Young A, Pascal A, Horton P (1994) The effects of illumination on the xanthophyll composition of the photosystem II light harvesting complexes of spinach thylakoid membranes. Plant Physiology 104:227–234

  • Sakai T, Kagawa T, Kasahara M, Swartz TE, Christie JM, Briggs WR, Wada M, Okada K (2001) Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci 98:6969–6974

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seeman JR, Sharkey TD, Wang J, Osmanod CB (1987) Environmental effects on photosynthesis, nitrogen-use efficiency, and metabolite pools in leaves of sun and shade plants. Plant Physiol 84:796–802

    Article  Google Scholar 

  • Siefermann D, Yamamoto HY (1975) Properties of NADPH and oxygen-dependent zeaxanthin epoxidation in isolated chloroplasts: a transmembrane model for the violaxanthin cycle. Biochem Biophys Res Commun 62:456–461

    Article  CAS  PubMed  Google Scholar 

  • Tikkanen M, Piippo M, Suorsa M, Sirpio S, Mulo P, Vainonen J, Vener AV, Allahverdiyeva Y, Aro EM (2006) State transitions revisited—a buffering system for dynamic low light acclimation of Arabidopsis. Plant Mol Biol 62:779–793

    Article  PubMed  Google Scholar 

  • Trissl HW, Lavergne J (1994) Fluorescence induction from photosystem II: analytical equations for the yields of photochemistry and fluorescence derived from analysis of a model including exciton-radical pair equilibrium and restricted energy transfer between photosynthetic units. Aust J Plant Physiol 22:183–193

    Article  Google Scholar 

  • Tsuboi H, Wada M (2011) Chloroplasts can move in any direction to avoid strong light. J Plant Res 124:201–210

    Article  PubMed  Google Scholar 

  • Valkunas L, Chmeliov J, Trinkunas G, Duffy CDP, van Grondelle R, Ruban AV (2011) Excitation migration, quenching, and regulation of photosynthetic light harvesting in photosystem II. J Phys Chem B 115:9252–9260

    Article  CAS  PubMed  Google Scholar 

  • Valladares F, Pearcy RW (1997) Interactions between water stress, sun–shade acclimation, heat tolerance and photoinhibition in the sclerophyll Heteromeles arbutifolia. Plant, Cell Environ 20:25–36

    Article  Google Scholar 

  • van Oort B, Alberts M, de Bianchi S, Dall’Osto L, Bassi R, Trinkunas G, Croce R, van Amerongen H (2010) Effect of antenna depletion in photosystem II on excitation energy transfer in Arabidopsis thaliana. Biophys J 98:922–931

    Article  PubMed Central  PubMed  Google Scholar 

  • Vass I, Styring S, Hundal T, Koivuniemi A, Aro E-M, Andersson B (1992) Reversible and irreversible intermediates during photoinhibition of photosystem II: stable reduced QA species promote chlorophyll triplet formation. Proc Natl Acad Sci 89:1408–1412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wahadoszamen M, Berera R, Ara AM, Romero E, van Grondelle R (2012) Identification of two emitting sites in the dissipative state of the major light harvesting antenna. Phys Chem Chem Phys 14:759–766

    Article  CAS  PubMed  Google Scholar 

  • Walters RG, Horton P (1993) Theoretical assessment of alternative mechanisms for non-photochemical quenching of PS II fluorescence in barley leaves. Photosynth Res 36:119–139

    Article  CAS  PubMed  Google Scholar 

  • Ware MA, Belgio E, Ruban AV (2014) Comparison of the protective effectiveness of NPQ in Arabidopsis plants deficient in PsbS protein and zeaxanthin. J Exp Bot. doi:10.1093/jxb/eru477

    PubMed Central  PubMed  Google Scholar 

  • Wientjes E, van Amerongen H, Croce R (2013) Quantum yield of charge separation in photosystem II: functional effect of changes in the antenna size upon light acclimation. J Phys Chem 117:11200–11208

    Article  CAS  Google Scholar 

  • Yakushevska AE, Keegstra W, Boekema EJ, Dekker JP, Andersson J, Jansson S, Ruban AV, Horton P (2003) The structure of photosystem II in Arabidopsis: localization of the CP26 and CP29 antenna complexes. Biochemistry 42:608–613

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto HY (1979) Biochemistry of the violaxanthin cycle in higher plants. Pure Appl Chem 51:639–648

    Article  CAS  Google Scholar 

  • Yamamoto HY, Kamite L (1972) The effects of dithiothreitol on violaxanthin de-epoxidation and absorbance changes in the 500-nm region. Biochim Biophys Acta 267:538–543

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Professor Leonas Valkunas and Dr Christopher Duffy for helpful discussions. This work was supported by Queen Mary Principal’s research studentship to MAW and The Leverhulme Trust and UK Biotechnology and Biological Sciences Research Council to AVR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Ruban.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11120_2015_102_MOESM1_ESM.pptx

Supplementary materialFig. S1 a Typical high light acclimated plant chlorophyll fluorescence scheme of induction with an eight step increasing actinic light (AL) routine. In this example 0, 90, 190, 280, 420, 625, 820, 1150, and 1500 µmol m−2 s−1 AL intensities were used. 80 and 90 % AL intensities of the aforesaid values were achieved by carefully extracting the fibre-optic from the emitting diode and determining the AL intensity with a Walz MQS-B sensor. This allowed a more accurate reflection of PSII susceptibility to photodamage to be realised. For a detailed explanation of routine development see Ruban and Belgio (2014). b A zoomed in region of the fluorescence scheme (a) illustrating the timing and application of 625, 820 and 1150 µmol m−2 s−1 AL (upward arrow and downward arrow demonstrate the turning of AL on and off, respectively), along with saturating pulses (SP) (P1, P2, P3). P1 indicates an SP in the dark, or after 10 s of far red (FR) light, P2 during AL illumination, and P3 at the end of AL treatment. The difference between Fo′act. and Fo′calc. is determined at P1, and subsequently used to calculate qPd. At low AL intensities, there is little to no difference between Fo′calc. and Fo′act., but under increasing AL intensities, the two values diverge. See also ‘Materials and methods’ for a detailed description. The timing scheme in the dark was (AL off)(FR on)-(10 s)-(FR off/SP)-(5 s)-(AL on).Fig. S2 a ΔFo′ [(Fo′act.-Fo′calc.)/Fo′act.] results obtained from fluorescence traces for each AL intensity were averaged for medium-light grown plants. Error bars show SEM (n = 10). b Relationship between NPQ and qPd (open circles) and NPQ and PSII actual yield (closed circles) for medium-light grown plants. Data points were averaged from 30 repeats on whole intact leaves. Error bars show the standard error of the mean (n = 30). The theoretical yield (continuous line) was calculated using Eq. 1 of ‘Materials and methods’, but with qPd always equal to 1.Fig. S3 Absorbance spectra (Hitachi, U-3310 spectrophotometer) conducted on bands obtained from sucrose gradients (Fig. 4) for (a) low-light (b) medium-light (c) high-light grown plants. All bands were zeroed at 750 nm. Band 2–5 correspond to monomers, trimeric LHCII, LHCII-CP29-CP24, PSII core complexes, respectively. Bands 1 and 6 were identified as free pigments and PSI-LHCI, respectively (data not shown).Fig. S4Example of calculation of integral below absorbance spectra taken from Fig. S3 (band 5), with trace zeroed at 750 nm. Using OriginPro 9.0, the mathematical area under each trace was calculated using the integrate function between 550 and 750 nm. This area was used to calculate the total amount of arbitrary chlorophyll. This was achieved by multiplying the total amount of the band extraction from the sucrose gradient (ml) by the dilution factor of solution used to perform the absorbance spectra, and by the area measured under the trace. This arbitrary chlorophyll value was divided by the number of chlorophylls per complex in each band (42 chlorophylls per LHCII trimer (band 3), 66 per LHCII-CP29-CP24 complex (band 4) and 35 per PSII core complex (band 5) to ascertain the amount of complexes present.Fig. S5PSII fast fluorescence induction traces performed on detached lincomycin-treated leaves. Vacuum infiltration with 30 μM DCMU was perfomed 20 s before exposure to 7 μmol m-2 s-1. Traces are the mean values for 3 repeats. All traces were zeroed at Fo and normalised to 1 at F m .Fig. S6The average qPd value for HL, ML and LL grown plants at the end of all gradually increasing actinic light routines. 10 repeats of each (0, 90, 190, 280, 420, 625, 820, 1150, 1500 µmol m−2 s−1) (0, 81, 171, 256.5, 378, 562.5, 738, 1035, 1350 µmol m−2 s−1) (0, 72, 152, 228, 336, 500, 656, 920, 1200 µmol m−2 s−1) incrementing routines were performed. Error bars illustrate the standard error of the mean (n = 30).Supplementary material 1 (PPTX 417 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ware, M.A., Belgio, E. & Ruban, A.V. Photoprotective capacity of non-photochemical quenching in plants acclimated to different light intensities. Photosynth Res 126, 261–274 (2015). https://doi.org/10.1007/s11120-015-0102-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-015-0102-4

Keywords

Navigation