Skip to main content
Log in

Sucrose non-fermenting 1-related protein kinase 2 (SnRK2): a family of protein kinases involved in hyperosmotic stress signaling

  • Review Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Our understanding of plant adaptation to abiotic stresses, which include drought, salinity, non-optimal temperatures and poor soil nutrition, is limited, although significant strides have been made in identifying some of the gene players and signaling partners. Several protein kinases get activated in plants in response to osmotic stress and the stress hormone abscisic acid (ABA). Among these is a superfamily of sucrose non-fermenting protein kinase genes (SnRK2). This review focuses on the developments related to the activity, substrates, interacting proteins and gene regulation of SnRK2 gene family members. Reversible phosphorylation as a crucial regulatory mechanism turns out to be a rule rather than an exception in plant responses to abiotic stress. Nine out of thirteen bZIP transcription factors (ABI5/ABF/AREB family) share the recognition motif, R-Q-X-S/T, suggesting that likely SnRK2 kinases have a major role in regulating gene expression during hyperosmotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABRE:

ABA responsive element (CACGTGGC)

G box:

core sequence ACGT in CCACGTGG, TGACGTGG

CE:

coupling elements (CE1: TGCCACCGG; CE3: ACGCGTGTC)

ABF:

ABRE binding factors

bZIP:

protein containing a basic amino acid enriched region adjacent to a leucine zipper

References

  • Abe, H., Shinozaki, K.Y., Urao, T., Iwasaki, T., Hosokawa, D. and Shinozaki, K. (1997). Role of Arabidopsis MYC and MYB homologs in drought and abscisic acid regulated gene expression. Plant Cell, 9: 1859–1868.

    Article  PubMed  CAS  Google Scholar 

  • Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K. and Shinozaki, Y.K. (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 15: 63–78.

    Article  PubMed  CAS  Google Scholar 

  • Agarwal, P.K., Agarwal, P., Reddy, M.K. and Sopory S.K. (2006). Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep., 25: 1263–1274.

    Article  PubMed  CAS  Google Scholar 

  • Alderson, A., Sabelli, P.A., Dickinson, J.R., Cole, D., Richardson, M., Kreis, M., Shewry, P.R. and Halford, N.G. (1991). Complementation of snf1, a mutation affecting global regulation of carbon metabolism in yeast, by a plant protein kinase cDNA. Proc. Natl. Acad. Sci. USA, 88: 8602–8605.

    Article  PubMed  CAS  Google Scholar 

  • Barker, J.H., Slocombe, S.P., Ball, K.L., Hardie, D.G., Shewry, P.R. and Halford, N.G. (1996). Evidence that barley 3-hydroxy-3-methylglutaryl-coenzyme, a reductase kinase, is a member of the sucrose nonfermenting-1-related protein kinase family. Plant Physiol., 112: 1141–1149.

    Article  PubMed  CAS  Google Scholar 

  • Basra, A.S. (2001). Crop responses and adaptations to temperature stress. Mechanisms of chilling injury and tolerance. In: T.K. Prasad (ed.). Food Products Press, New York. pp. 1–34.

    Google Scholar 

  • Belin, C., de Franco, P.O., Bourbousse, C., Chaignepain, S., Schmitter, J.M., Vavasseur, A., Giraudat, J., Barbier-Brygoo, H. and Thomine, S. (2006). Identification of features regulating OST1 kinase activity and OST1 function in guard cells. Plant Physiol., 141: 1316–1327.

    Article  PubMed  CAS  Google Scholar 

  • Bertauche, N., Leung, J. and Giraduat, J. (1996). Protein phosphatase activity of abscisic acid insensitive (ABI1) protein from Arabidopsis thaliana. Eur. J. Biochem., 241: 193–200.

    Article  PubMed  CAS  Google Scholar 

  • Bogre, L., Ligterink, W., Meskiene, I., Barker, P.J., Heberle-Bors, E., Huskisson, N.S. and Hirt, H. (1997). Wounding induces the rapid and transient activation of a specific MAP kinase pathway. Plant Cell, 9: 75–83.

    Article  PubMed  Google Scholar 

  • Boudsocq, M., Brygoo, H.B. and Lauriere, C. (2004). Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J. Biol. Chem., 279: 41758–41766.

    Article  PubMed  CAS  Google Scholar 

  • Boudsocq, M., Droillard, M., Barbier-Brygoo, H. and Laurier, C. (2007). Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1-related protein kinases 2 by osmotic stresses and abscisic acid. Plant Mol Biol., 63: 491–503.

    Article  PubMed  CAS  Google Scholar 

  • Burza, A.M., Pekala I., Sikora J., Siedlecki P., Malagocki P., Bucholc M., Koper L., Zielenkiewicz P., Dadlez M. and Dobrowolska G. (2006). Nocotiana tabacum osmotic stress-activated kinase is regulated by phosphorylation on Ser-154 and Ser-158 in the kinase activation loop. J. Biol Chem., 281:34299–34311.

    Article  PubMed  CAS  Google Scholar 

  • Callahan, F.E., Ghirardi, M.L., Sopory, S.K., Mehta, A.M., Edelman, M. and Mattoo, A.K. (1990). A novel metabolic form of the 32kDa-D1 protein in the granalocalized reaction center of photosystem II. J. Biol. Chem. 265: 15357–15360.

    PubMed  CAS  Google Scholar 

  • Cao, X., Costa, L.M., Biderre-Petit, C., Kbhaya, B., Dey, N., Perez, P., McCarty, D.R., Gutierrez-Marcos, J.F. and Becraft, P.W. (2007). Abscisic acid and stress signals induce Viviparous1 expression in seed and vegetative tissues of maize. Plant Physiol., 143: 720–731.

    Article  PubMed  CAS  Google Scholar 

  • Celenza, J.L. and Carlson, M. (1986). A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science, 233: 1175–1180.

    Article  PubMed  CAS  Google Scholar 

  • Chae, M.J., Lee, J.S., Nam, M.H., Cho, K.H., Ji, Y., Yi, S.A., Suh, S.C. and Yoon, I.S. (2007). A rice dehydration inducible SNF1-related protein kinase 2 phosphorylates an abscisic acid responsive element-binding factor and associates with ABA signaling. Plant Mol Biol., 63: 151–169.

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy, V., Schumaker, K. and Zhu, J.K. (2004). Molecular genetics perspectives on cross-talk and specificity in abiotic stress signalling in plants. J. Exp. Bot., 55: 225–236.

    Article  PubMed  CAS  Google Scholar 

  • Choi, H., Hong, J., Ha, J., Kang, J. and Kim, S.Y. (2000). ABFs, a family of ABA responsive element binding factors. J. Biol. Chem. 275: 1723–1730.

    Article  PubMed  CAS  Google Scholar 

  • Dale, S., Wilson, W.A., Edelman, A.M. and Hardie, G. (1995). Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase I. FEBS Lett., 361: 191–195.

    Article  PubMed  CAS  Google Scholar 

  • Edelman, M. and Mattoo, A.K. (2006). The D1 protein: past and future. In: Photoprotection, Photoinhibition, Gene Regulation and Environment (Eds. Demmig-Adams, B., Adams, W. and Mattoo, A.K.), Springer, Dordecht, the Netherlands, pp. 23–38.

    Chapter  Google Scholar 

  • Finkelstein, R.R., Gampala, S. and Rock, C.D. (2002). Abscisic acid signaling in seeds and seedlings. Plant Cell, 14: S15–S45.

    PubMed  CAS  Google Scholar 

  • Fujii, H., Verslues, P.E. and Zhu, J.K. (2007). Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth and gene expression in Arabidopsis. Plant Cell, 19: 485–494.

    Article  PubMed  CAS  Google Scholar 

  • Furihata, T., Maruyama, K., Fujita, Y., Umezawa, T., Yoshida, R., Shinozaki, K., Yamaguchi-Shinozaki, K. (2006). Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc. Natl. Acad. Sci. USA, 103: 1988–1993.

    Article  PubMed  CAS  Google Scholar 

  • Ghirardi, M.L., Mahajan, S., Sopory, S.K., Edelman, M. and Mattoo, A.K. (1993). Photosystem II reaction center particle from Spirodela stroma lamellae. J. Biol. Chem., 268: 5357–5360.

    PubMed  CAS  Google Scholar 

  • Goaniasti, F., Beaudoin, N., Serizet, C., Webb, A.A, Vartanian, N. and Giraudat, J. (1999). ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell, 11: 1897–1910.

    Google Scholar 

  • Gomez-Cadenas, A., Verhey, S.D., Holappa, L.D., Shen, Q., Ho, T.H. and Walker-Simmons, M.K. (1999). An abscisic acid-induced protein kinase, PKABA1, mediates abscisic acid-suppressed gene expression in barley aleurone layers. Proc. Natl. Acad. Sci. USA, 96: 1767–1772.

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Cadenas, A., Zentella, R., Walker-Simmons, M.K. and Ho, T.H. (2001)). Gibberellin/abscisic acid antagonism in barley aleurone cells: site of action of the protein kinase PKABA1 in relation to gibberellin signaling molecules. Plant Cell, 13: 667–679.

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Porras, J.L., Riano-Pachon, D.M., Dreyer, I., Mayer, J.E. and Mueller-Roeber, B. (2007). Genome wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice. BMC Genomics, 8: 260.

    Article  PubMed  CAS  Google Scholar 

  • Gong, D., Zhang, C., Chen, X., Gong, Z., and Zhu, J.K. (2002). Constitutive activation and transgenic evaluation of the function of an Arabidopsis PKS protein kinase. J. Biol. Chem., 277: 42088–42096.

    Article  PubMed  CAS  Google Scholar 

  • Guo, Y., Xiong, L., Song, C.P., Gong, D., Halfter, U. and Zhu, J.K. (2002). A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev. Cell, 3: 233–244.

    Article  PubMed  CAS  Google Scholar 

  • Halford, N.G., Bouly, J.P. and Thomas, M. (2000). SNF1-related protein kinases (SnRKs): regulators at the heart of the control of carbon metabolism and partitioning. Adv. Bot. Res., 32: 405–434.

    Article  CAS  Google Scholar 

  • Halford, N.G., Hey, S., Jhurreea, D., Laurie, S., McKibbin, R.S., Paul, M. and Zhang, Y. (2003). Metabolic signalling and carbon partitioning: role of Snf1-related (SnRK1) protein kinase. J. Exp. Bot., 54: 467–475.

    Article  PubMed  CAS  Google Scholar 

  • Halfter, U., Ishitani, M. and Zhu, J.K. (2000). The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc. Natl. Acad. Sci. USA, 97: 3735–3740.

    Article  PubMed  CAS  Google Scholar 

  • Hardie, D.G., Carling, D. and Carlson, M. (1998). The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu. Rev. Biochem., 67: 821–855.

    Article  PubMed  CAS  Google Scholar 

  • Hardie, D.G. (1999). Plant Protein Serine/Threonine Kinases: classification and functions. Annual Review of Plant Physiology and Plant Mol. Biol., 50: 97–131.

    Article  CAS  Google Scholar 

  • Hardie, D.G. (2007). AMP-activated /SNF1 protein kinases: conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol., 8: 774–785.

    Article  PubMed  CAS  Google Scholar 

  • Harper, J.F., Breton, G. and Harmon, A. (2004). Decoding Ca2+ signals through plant protein kinases. Annu. Rev. Plant Biol., 55: 263–288.

    Article  PubMed  CAS  Google Scholar 

  • Hirayama, T. and Shinozaki, K. (2007). Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci., 12: 343–351.

    Article  PubMed  CAS  Google Scholar 

  • Hobo, T., Asada, M., Kowyama, Y. and Hattori, T. (1999). ACGT containing abscisic acid response element (ABRE) and coupling element3(CE3) are functionally equivalent. Plant J., 19: 679–689.

    Article  PubMed  CAS  Google Scholar 

  • Hotta, H., Aoki, N., Matsuda, T. and Adachi, T. (1998). Molecular analysis of a novel protein kinase in maturing rice seed. Gene, 213: 47–54.

    Article  PubMed  CAS  Google Scholar 

  • Hrabak, E.M., Chan, C.W.M., Gribskov, M., Harper, J.F., Choi, J.H., Halford, N.G., Kudla, J., Luan, S., Nimmo, H.G. and Sussman, M.R. (2003). Characterization of eight new members of the calmodulin-like domain protein kinase gene family from Arabidopsis thaliana. Plant Mol. Biol., 31: 405–412.

    Article  Google Scholar 

  • Ikeda, Y., Koizumi, N., Kusano, T. and Sano, H. (1999). Sucrose and cytokinin modulation of WPK4, a gene encoding a SNF1-related protein kinase from wheat. Plant Physiol., 121: 813–820.

    Article  PubMed  CAS  Google Scholar 

  • Ingram, J. and Bartels, D. (1996). The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 47: 377–403.

    Article  PubMed  CAS  Google Scholar 

  • Jakoby, M., Weisshar, B., Dröge-Laser, W., Vicente-Carbajosa, J., Tiedemann, J., Kroj, T., Parcy, F. and bZIP Research Group. (2002). bZIP transcription factors in Arabidopsis. Trends Plant Sci., 7: 106–111.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, G.L. and Lapadat, R. (2002). Mitogen activated protein kinase pathway mediated by ERK, JNK, and p38 protein kinases. Science, 298: 1911–1912.

    Article  PubMed  CAS  Google Scholar 

  • Jonak, C., Kiegerl, S., Ligterink, W., Barker, P.J., Huskisson, N.S. and Hirt, H. (1996). Stress signaling in plants: A mitogen activated protein kinase pathway is activated by cold and drought. Proc. Natl. Acad. Sci. USA, 93: 11274–11279.

    Article  PubMed  CAS  Google Scholar 

  • Kagaya, Y., Hobo, T., Murata, M., Ban, A. and Hattori, T. (2002). Abscisic acid-induced transcription is mediated by phosphorylation of an abscisic acid response element binding factor, TRAB1. Plant Cell, 14: 3177–3189.

    Article  PubMed  CAS  Google Scholar 

  • Kelner, A., Pekala, I., Kaczanowski, S., Muszynska, G., Hardie, D.G. and Dobrowolska, G. (2004). Biochemical characterization of the tobacco 42-kDa protein kinase activated by osmotic stress. Plant Physiol., 136: 3255–3265.

    Article  PubMed  CAS  Google Scholar 

  • Kim, K.N., Cheong, Y.H., Grant, J.J., Pandey, G.K. and Luan, S. (2003). CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell, 15: 411–423.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, T., Shibagaki, N., Ohkama-Ohtsu, N., Hayashi, H., Yoneyama, T., Davies, J.P. and Fujiwara, T. (2006). Arabidopsis SNRK2.3 protein kinase is involved in the regulation of sulfur-responsive gene expression and O-acetyl-L-serine accumulation under limited sulfur supply. Soil Sci. Plant Nutri., 52: 211–220.

    CAS  Google Scholar 

  • Kobayashi, Y., Murata, M., Minami, H., Yamamoto, S., Kagaya, Y., Hobo, T., Yamamoto, A. and Hattori, T. (2005). Abscisic acid activated SNRK2 protein kinases function in the gene regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J., 44: 939–949.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, Y., Yamamoto, S., Minami, H., Kagaya, Y. and Hattori, T. (2004). Differential activation of the rice sucrose non fermenting 1 related protein kinase 2 family by hyperosmotic stress and abscisic acid. Plant Cell, 16: 1163–1177.

    Article  PubMed  CAS  Google Scholar 

  • Koorneef, M., Reuling, G. and Karssen, C.M. (1984). The isolation and characterization of abscisic acid insensitive mutants of Arabidopsis thaliana. Physiol. Plant., 61: 377–383.

    Article  Google Scholar 

  • Laurie, S., McKibbin, R.S. and Halford, N.G. (2003). Antisense SNF1-related (SnRK1) protein kinase gene represses transient activity of an alpha-amylase (alpha-Amy2) gene promoter in cultured wheat embryos. J. Exp. Bot., 54: 739–747.

    Article  PubMed  CAS  Google Scholar 

  • Leung, J. and Giraduat, J. (1998). Abscisic acid signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol., 49: 199–222.

    Article  PubMed  CAS  Google Scholar 

  • Leung, J., Bouvier-Durnad, M., Morris, P.C., Guerrier, D., Chefdor, F. and Giraudat, J. (1994). Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science, 264: 1448–1452.

    Article  PubMed  CAS  Google Scholar 

  • Leung, J., Merlot, S. and Giraudat, J. (1997). The Arabidopsis acid-insensitive2 (ABI2) and ABI1 genes encode homologous protein phosphatase 2C involved in abscisic acid signal transduction. Plant Cell, 9: 759–771.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., Kinoshita, T., Pandey, S., Ng, C.K., Gygi, S.P., Shimazaki, K. and Assmann, S.M. (2002). Modulation of an RNA-binding protein by abscisic-acid-activated protein kinase. Nature, 418: 793–797.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., Wang, X.Q., Watson, M.B. and Assmann, S.M. (2000). Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science, 287: 300–303.

    Article  PubMed  CAS  Google Scholar 

  • Li, J. and Assmann, S.M. (1996). An abscisic acid-activated and calcium-independent protein kinase from guard cells of fava bean. Plant Cell, 8: 2359–2368.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J.P., Ishitani, M., Halfer, U., Kim, C.S. and Zhu, J.K. (2000). The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc. Natl. Acad. Sci. USA, 97: 3730–3734.

    Article  PubMed  CAS  Google Scholar 

  • Long, S.P., Ainsworth E.A., Leakey A.D.B. and Nösberger, D.R.O. (2006). Food for thought: Lower than expected crop yield stimulation with rising CO2 concentration. Science, 312: 1918–1921.

    Article  PubMed  CAS  Google Scholar 

  • Mattoo, A.K., Bhalla-Sarin, N. and Sopory, S.K. (2000). Biotechnology in the management of abiotic stresses. In: Potato, Global Research & Development, (Eds. Paul Khurana, S.M., Shekhawat, G.S., Singh, B.P. and Pandey, S.K.), India Potato Association, Shimla, 1: 212–218.

    Google Scholar 

  • Michel, D., Salamini, F., Bartels, D., Dale, P., Baga, M., and Szalay, A. (1993). Analysis of a desiccation and ABA-responsive promoter isolated from the resurrection plant Craterostigma plantgineum. Plant J., 4: 29–40.

    Article  PubMed  CAS  Google Scholar 

  • Mikolajczyk, M., Awotunde, O.S., Muszynska, G., Klessig, D.F. and Dobrowolska, G. (2000). Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. Plant Cell, 12: 165–178.

    Article  PubMed  CAS  Google Scholar 

  • Monks, D.E, Aghoram, K., Courtney, P.D., DeWald, D.B and Dewey, R.E. (2001). Hyperosmotic stress induces the rapid phosphorylation of a soybean phosphatidylinositol transfer protein homolog through activation of the protein kinases SPK1 and SPK2. Plant Cell, 13: 12005–12019.

    Article  Google Scholar 

  • Mustilli, A.C., Merlot, S., Vavasseur, A., Fenzi, F. and Giraudat, J. (2002). Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell, 14: 3089–3099.

    Article  PubMed  CAS  Google Scholar 

  • Neumann, P.M., (1997). Salinity resistance and plant growth revisited. Plant Cell Environ., 20: 1193–1198.

    Article  CAS  Google Scholar 

  • Purcell, P.C., Smith, A.M. and Halford, N.G. (1998). Antisence expression of a sucroe nonfermenting 1 related protein kinase sequence in potato results in decreased expression of sucrose synthase in tubers and loss of sucrose-inducibility of sucrose synthase transcripts in leaves. Plant J. 14: 195–202.

    Article  CAS  Google Scholar 

  • Raymond, E.C. and Thorner, J. (2007). Function and regulation in MAPK signaling pathways: Lessons learned from the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta, 1773: 1311–1340.

    Article  CAS  Google Scholar 

  • Sano, H. and Youssefian, S. (1994). Light and nutritional regulation of transcripts encoding a wheat protein kinase homolog is mediated by cytokinins. Proc. Natl. Acad. Sci. USA, 91: 2582–2586.

    Article  PubMed  CAS  Google Scholar 

  • Serraj, R. and Sinclair T.R. (2002). Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant, Cell & Environment, 25: 333–341.

    Article  Google Scholar 

  • Shen, Q., Gomez-Cadenas, A., Zhang, P., Walker-Simmons M.K., Sheen, J. and Ho, T.H. (2001). Dissection of abscisic acid signal transduction pathways in barley aleurone layers. Plant Mol. Biol., 47: 437–448.

    Article  PubMed  CAS  Google Scholar 

  • Shin, R., Alvarez, S., Burch, A.Y., Jez, J.M., Schachtman, D.P. (2007). Phosphoproteomic identification of targets of the Arabidopsis sucrose nonfermenting-like kinase SnRK2.8 reveals a connection to metabolic processes. Proc. Natl. Acad. Sci. USA, 150: 6460–6465.

    Article  CAS  Google Scholar 

  • Shinozaki, Y.K. and Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol., 57: 781–803.

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki, K., Yamaguchi-Shinozaki, K. and Seki, M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol., 6: 410–407.

    Article  PubMed  CAS  Google Scholar 

  • Sopory, S.K., Ghirardi, M.L., Greenberg, B.M., Elich, T., Edelman, M. and Mattoo, A.K. (1992). Regulation of the 32kDa-D1 photosystem II reaction center protein. In: Photosynthesis: Photoreactions to Crop Productivity (Eds. Abrol, Y.P., Mohanty, P. and Govindjee ), Oxford/IBH, New Delhi, pp. 131–156.

    Google Scholar 

  • Sopory, S.K., Greenberg, B.M., Mehta, R.A., Edelman, M. and Mattoo, A.K. (1990). Free-radical scavengers inhibit light-dependent degradation of the 32kDa photosystem II reaction center protein. Z. Naturforsch., 45c: 412–417.

    Google Scholar 

  • Taylor, I.B., Burbidge, A. and Thompson, A.J. (2000). Control of abscisic acid synthesis. J. Exp. Biol., 51: 1563–1574.

    CAS  Google Scholar 

  • Thelander, M., Olsson, T. and Ronne, H. (2004). Snf1-related protein kinase 1 is needed for growth in a normal day-night light cycle. EMBO J., 23: 1900–1910.

    Article  PubMed  CAS  Google Scholar 

  • Umezawa, T., Yoshida, R., Maruyama, K., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2004). SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA, 101: 17306–17311.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson, S. and Davies, W.J. (2002). ABA-based chemical signaling: the coordination of responses to stress in plants. Plant Cell Environ., 25: 195–210.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, R., Hobo, T., Ichimura, K., Mizoguchi, T., Takahashi, F., Aronso, J., Ecker, J.R. and Shinozaki, K. (2002). ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol., 43: 1473–1483.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, R., Umezawa, T., Mizoguchi, T., Takahashi, S., Takahashi, F. and Shinozaki, K. (2006). The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J. Biol. Chem., 281: 5310–5318.

    Article  PubMed  CAS  Google Scholar 

  • Zelitch, I. (1982). The close relationship between net photosynthesis and crop yield. Bioscience, 32: 796–802.

    Article  Google Scholar 

  • Zhang, T., Liu, Y., Yang, T., Zhang, L., Xu, S., Xue, L. and An, L. (2006). Diverse signals converge at MAPK cascades in plant. Plant Physiol. Biochem., 44: 274–283.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Shewry, P.R., Jones, H., Barcelo, P., Lazzeri, P.A. and Halford, N.G. (2001). Expression of antisense SnRK1 protein kinase sequence causes abnormal pollen development and male sterility in transgenic barley. Plant J., 28: 431–441.

    Article  PubMed  CAS  Google Scholar 

  • Zou, H., Zhang, X., Zhao, J., Yang, Q., Wu, Z., Wang, F., and Huang, C. (2006). Cloning and characterization of maize ZmSPK1, a homologue to nonfermenting 1-related protein kinase2. Afri. J. Biotech., 5: 490–496.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Autar K. Mattoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shukla, V., Mattoo, A.K. Sucrose non-fermenting 1-related protein kinase 2 (SnRK2): a family of protein kinases involved in hyperosmotic stress signaling. Physiol Mol Biol Plants 14, 91–100 (2008). https://doi.org/10.1007/s12298-008-0008-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-008-0008-0

Key words

Navigation