Skip to main content

Advertisement

Log in

Non Transferrin Bound Iron: Nature, Manifestations and Analytical Approaches for Estimation

  • Review Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Iron is an essential trace element and plays a number of vital roles in biological system. It also leads the chains of pathological actions if present in excess and/or present in free form. Major portion of iron in circulation is associated with transferrin, a classical iron transporter, which prevent the existence of free iron. The fraction of iron which is free of transferrin is known as “non transferrin bound iron”. Along with the incidence in iron over loaded patient non transferrin bound iron has been indicated in patients without iron overload. It has been suggested as cause as well as consequence in a number of pathological conditions. The major organs influenced by iron toxicity are heart, pancreas, kidney, organs involved in hematopoiesis etc. The most commonly suggested way for iron mediated pathogenesis is through increased oxidative stress and their secondary effects. Generation of free oxygen radicals by iron has been well documented in Fenton chemistry and Haber–Weiss reaction. Non transferrin bound iron has obvious chance to generate the free reactive radicals as it is not been shielded by the protective carrier protein apo transferrin. The nature of non transferrin bound iron is not clear at present time but it is definitely a group of heterogenous iron forms free from transferrin and ferritin. A variety of analytical approaches like colorimetry, chromatography, fluorimetry etc. have been experimented in different research laboratories for estimation of non transferrin bound iron. However the universally accepted gold standard method which can be operated in pathological laboratories is still to be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hider RC. Nature of nontransferrin-bound iron. Eur J Clin Invest. 2002;32:50–4.

    PubMed  CAS  Google Scholar 

  2. Hershko H, Graham G, Bates GW, Rachmilewitz E. Nonspecific serum iron in thalassaemia: an abnormal serum iron fraction of potential toxicity. Br J Haematol. 1978;40:255–63.

    PubMed  CAS  Google Scholar 

  3. Paffetti P, Perrone S, Longini M, Ferrari A, Tanganelli D, Marzocchi B, et al. Non-protein-bound iron detection in small samples of biological fluids and tissues. Biol Trace Elem Res. 2006;112:221–32.

    PubMed  CAS  Google Scholar 

  4. Breuer W, Cabantchik ZI. A fluorescence-based one-step assay for serum non-transferrin-bound iron. Anal Biochem. 2001;299:194–202.

    PubMed  CAS  Google Scholar 

  5. Nilsson UA, Bassen M, Sävman K, Kjellmer I. A simple and rapid method for the determination of “free” iron in biological fluids. Free Radic Res. 2002;36:677–84.

    PubMed  CAS  Google Scholar 

  6. Breuer W, Hershko C, Cabantchik ZI. The importance of non-transferrin bound iron in disorders of iron metabolism. Transfus Sci. 2000;23:185–92.

    PubMed  CAS  Google Scholar 

  7. Kruszewski M. Labile iron pool: the main determinant of cellular response to oxidative stress. Mutat Res. 2003;531:81–92.

    PubMed  CAS  Google Scholar 

  8. Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 1990;186:1–85.

    PubMed  CAS  Google Scholar 

  9. Kakhlon O, Cabantchik ZI. The labile iron pool: characterization, measurement, and participation in cellular processes. Free Rad Biol Med. 2002;33:1037–46.

    PubMed  CAS  Google Scholar 

  10. von Bonsdorff L, Lindeberg E, Sahlstedt L, Lehto J, Parkkinen J. Bleomycin-detectable iron assay for non-transferrin-bound iron in hematologic malignancies. Clin Chem. 2002;48:307–14.

    Google Scholar 

  11. Breuer W, Ermers MJ, Pootrakul P, Abramov A, Hershko C, Cabantchik ZI. Desferrioxamine-chelatable iron, a component of serum non-transferrin-bound iron used for assessing chelation therapy. Blood. 2001;97:792–8.

    PubMed  CAS  Google Scholar 

  12. Esposito BP, Breuer W, Sirankapracha P, Pootrakul P, Hershko C, Cabantchik ZI. Labile plasma iron in iron overload: redox activity and susceptibility to chelation. Blood. 2003;102(7):2670–7.

    PubMed  CAS  Google Scholar 

  13. Anderson GJ. Non-transferrin-bound iron and cellular toxicity. J Gastroenterol Hepatol. 1999;14(2):105–8.

    PubMed  CAS  Google Scholar 

  14. Graham G, Bates GW, Rachmilewitz EA, Hershko C. Non-specific serum iron in thalassaemia: quantitation and chemical reactivity. Am J Hematol. 1979;6:207–17.

    PubMed  CAS  Google Scholar 

  15. Porter JB, Abeysinghe RD, Marshall L, Hider RC, Singh S. Kinetics of removal and reappearance of nontransferrin-bound plasma iron with deferoxamine therapy. Blood. 1996;88:705–13.

    PubMed  CAS  Google Scholar 

  16. Batey RG, Lai Chung Fong P, Shamir S, Sherlock S. A non-transferrin-bound serum iron in idiopathic hemochromatosis. Dig Dis Sci. 1980;25:340–6.

    PubMed  CAS  Google Scholar 

  17. Aruoma OI, Bomford A, Polson RJ, Halliwell B. Nontransferrin-bound iron in plasma from hemochromatosis patients: effect of phlebotomy therapy. Blood. 1988;72:1416–9.

    PubMed  CAS  Google Scholar 

  18. Loreal O, Gosriwatana I, Guyader D, Porter J, Brissot P, Hider RC. Determination of non-transferrin-bound iron in genetic hemochromatosis using a new HPLC-based method. J Hepatol. 2000;32:727–33.

    PubMed  CAS  Google Scholar 

  19. Gosriwatana I, Loréal O, Lu S, Brissot P, Porter J, Hider RC. Quantification of non-transferrin-bound iron in the presence of unsaturated transferrin. Anal Biochem. 1999;273:212–20.

    PubMed  CAS  Google Scholar 

  20. Breuer W, Ronson A, Slotki IN, Abramov A, Hershko C, Cabantchik ZI. The assessment of serum nontransferrin-bound iron in chelation therapy and iron supplementation. Blood. 2000;95:2975–82.

    PubMed  CAS  Google Scholar 

  21. al-Refaie FN, Wickens DG, Wonke B, Kontoghiorghes GJ, Hoffbrand AV. Serum non-transferrin-bound iron in beta-thalassaemia major patients treated with desferrioxamine and L1. Br J Haematol. 1992;82:431–6.

    PubMed  CAS  Google Scholar 

  22. Lee DH, Liu DY, Jacob DR, Hai-Rim Shin JR, Song K, Lee I, et al. Common presence of non-transferrin-bound iron among patients with type 2 diabetes. Diabetes Care. 2006;29:1090–5.

    PubMed  CAS  Google Scholar 

  23. Qian M, Liu M, Eaton JW. Transition metals bind to glycated proteins forming redox active “glycochelates”: implications for the pathogenesis of certain diabetic complications. Biochem Biophys Res Commun. 1998;250:385–9.

    PubMed  CAS  Google Scholar 

  24. Halliwell B, Aruoma OI, Mufti G, Bomford A. Bleomycin-detectable iron in serum from leukaemic patients before and after chemtherapy. Therapeutic implications for treatment with oxidant-generating drugs. FEBS Lett. 1988;241:202–4.

    PubMed  CAS  Google Scholar 

  25. Carmine TC, Evans P, Bruchelt G, Evans R, Handretinger R, Niethammer D, et al. Presence of iron catalytic for free radical reactions in patients undergoing chemtherapy: implications for therapeutic management. Cancer Lett. 1995;94:219–26.

    PubMed  CAS  Google Scholar 

  26. Dürken M, Nielsen P, Knobel S, Finckh B, Herrnring C, Dresow B, et al. Non-transferrin-bound iron in serum of patients receiving bone marrow transplants. Free Rad Biol Med. 1997;22:1159–63.

    PubMed  Google Scholar 

  27. Bradley SJ, Gosriwatana I, Srichairatanakool S, Hider RC, Porter JB. Non-transferrin-bound iron induced by myeloablative chemtherapy. Br J Haematol. 1997;99:337–43.

    PubMed  CAS  Google Scholar 

  28. Lele S, Shah S, McCullough PA, Rajapurkar M. Serum catalytic iron as a novel biomarker of vascular injury in acute coronary syndromes. EuroIntervention. 2009;5:1–7.

    Google Scholar 

  29. Harrison-Findik DD, Klein E, Crist C, Evans J, Timchenko N, Gollan J. Iron-mediated regulation of liver hepcidin expression in rats and mice is abolished by alcohol. Hepatology. 2007;46:1979–85.

    PubMed  CAS  Google Scholar 

  30. Detivaud L, Nemeth E, Boudjema K, Turlin B, Troadec MB, Leroyer P, et al. Hepcidin levels in humans are correlated with hepatic iron stores, hemoglobin levels, and hepatic function. Blood. 2005;106:746–8.

    PubMed  CAS  Google Scholar 

  31. De Feo TM, Fargion S, Duca L, Cesana BM, Boncinelli L, Lozza P, et al. Non-transferrin-bound iron in alcohol abusers. Alcohol Clin Exp Res. 2001;25:1494–9.

    PubMed  Google Scholar 

  32. Cortelezzi A, Cattaneo C, Cristiani S, Duca L, Sarina B, Deliliers GL, et al. Non-transferrin-bound iron in myelodysplastic syndromes: A marker of ineffective erythropoiesis? Hematol J. 2000;1:153–8.

    PubMed  CAS  Google Scholar 

  33. Mahesh S, Ginzburg Y, Verma A. Iron overload in myelodysplastic syndromes. Leuk Lymphoma. 2008;49:427–38.

    PubMed  CAS  Google Scholar 

  34. Brazzolotto X, Gaillard J, Pantopoulos K, Hentze MW, Moulis JM. Human cytoplasmic aconitase (iron regulatory protein 1) is converted into its [3Fe–4S] form by hydrogen peroxide in vitro but is not activated for iron-responsive element binding. J Biol Chem. 1999;274:21625–30.

    PubMed  CAS  Google Scholar 

  35. Halliwell B. Free radicals and antioxidants: a personal view. Nutr Rev. 1994;52:253–65.

    PubMed  CAS  Google Scholar 

  36. Halliwell B. The role of oxygen radicals in human disease, with particular reference to the vascular system. Haemostasis. 1993;23(suppl 1):118–26.

    PubMed  CAS  Google Scholar 

  37. Biemond P, Van Eijk HG, Swaak AJG, Koster JF. Iron mobilization from ferritin by superoxide derived from stimulated polymorphonuclear leukocytes: possible mechanism in inflammatory diseases. J Clin Invest. 1984;73:1576–9.

    PubMed  CAS  Google Scholar 

  38. Abdalla DS, Campa A, Monteiro HP. Low density lipoprotein oxidation by stimulated neutrophils and ferritin. Atherosclerosis. 1992;97:149–59.

    PubMed  CAS  Google Scholar 

  39. Gutteridge JMC. Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides. FEBS Lett. 1986;201:291–5.

    PubMed  CAS  Google Scholar 

  40. Puppo A, Halliwell B. Formation of hydroxyl radicals from hydrogen peroxide in the presence of iron: Is haemoglobin a biological Fenton catalyst? Biochem J. 1988;249:185–90.

    PubMed  CAS  Google Scholar 

  41. Gutteridge JMC, Smith A. Antioxidant protection by haemopexin of haemstimulated lipid peroxidation. Biochem J. 1988;256:861–5.

    PubMed  CAS  Google Scholar 

  42. Balla G, Jacob HS, Eaton JW, Belcher JD, Vercellotti GM. Hemin: a possible physiological mediator of low density lipoprotein oxidation and endothelial injury. Arterioscler Thromb. 1991;11:1700–11.

    PubMed  CAS  Google Scholar 

  43. Le Lan C, Loréal O, Cohen T, Ropert M, Glickstein H, Lainé F, et al. Redox active plasma iron in C282Y/C282Y hemochromatosis. Blood. 2005;105:4527–31.

    PubMed  Google Scholar 

  44. Sharma M, Saxena R, Gohil NK. Fluorescence assay of non-transferrin-bound iron in thalassemic sera using bacterial siderophore. Anal Biochem. 2009;394:186–91.

    PubMed  CAS  Google Scholar 

  45. Weijl NI, Elsendoorn TJ, Moison RM, Lentjes EG, Brand R, Berger HM, et al. Non-protein bound iron release during chemotherapy in cancer patients. Clin Sci (Lond). 2004;106:475–84.

    CAS  Google Scholar 

  46. Grootveld M, Bell JD, Halliwell B, Aruoma OI, Bomford A, Sadler PJ. Non-transferrin bound iron in plasma or serum from patients with idiopathic hemochromatosis. J Biol Chem. 1989;264:4417–22.

    PubMed  CAS  Google Scholar 

  47. Lovstad RA. Interaction of serum albumin with the Fe(III)-citrate complex. Int J Biochem. 1993;25:1015–7.

    PubMed  CAS  Google Scholar 

  48. May PM, Williams DR. Computer simulation of chelation therapy. Plasma mobilizing index as a replacement for effective stability constant. FEBS Lett. 1977;78:134–8.

    PubMed  CAS  Google Scholar 

  49. van der Heul C, van Eijk HG, Wiltink WF, Leijnse B. The binding of iron to transferrin and to other serum components at different degrees of saturation with iron. Clin Chim Acta. 1972;38:347–53.

    PubMed  Google Scholar 

  50. Pootrakul P, Sirankapracha P, Sankote J, Kachintorn U, Maungsub W, Sriphen K, et al. Clinical trial of deferiprone iron chelation therapy in beta-thalassaemia/haemoglobin E patients in Thailand. Br J Haematol. 2003;122:305–10.

    PubMed  CAS  Google Scholar 

  51. Pootrakul P, Breuer W, Sametband M, Sirankapracha P, Hershko C, Cabantchik ZI. Labile plasma iron (LPI) as an indicator of chelatable plasma redox activity in iron-overloaded b-thalassemia/HbE patients treated with an oral chelator. Blood. 2004;104:1504–10.

    PubMed  CAS  Google Scholar 

  52. Gutteridge JMC, Rowley DA, Halliwell B. Superoxide-dependent formation of hydroxyl radicals I in the presence of iron salts. Biochem J. 1981;199:263–5.

    PubMed  CAS  Google Scholar 

  53. Gutteridge JMC, Halliwell B. Radical promoting loosely-bound iron in biological fluids and the bleomycin assay. Life Chem Rep. 1987;4:113–42.

    CAS  Google Scholar 

  54. Evans PJ, Halliwell B. Measurement of iron and copper in biological systems: bleomycin and copper-phenanthroline assays. Methods Enzymol. 1994;233:82–92.

    PubMed  CAS  Google Scholar 

  55. Sahlstedt L, Ebeling F, von Bonsdorff L, Parkkinen J, Ruutu T. Non-transferrin-bound iron during allogeneic stem cell transplantation. Br J Haematol. 2001;113:836–8.

    PubMed  CAS  Google Scholar 

  56. Burkitt MJ, Milne L, Raafat A. A simple, highly sensitive and improved method for the measurement of bleomycin-detectable iron: the ‘catalytic iron index’ and its value in the assessment of iron status in haemochromatosis. Clin Sci. 2001;100:239–47.

    PubMed  CAS  Google Scholar 

  57. Han KE, Okada S. Serum bleomycin detectable iron in patients with thalassemia major with normal range of serum iron. Acta Med Okayama. 1995;49:117–21.

    PubMed  CAS  Google Scholar 

  58. Shah SV. Oxidants and iron in chronic kidney disease. Kidney Int Suppl. 2004;91:50–5.

    Google Scholar 

  59. Evans PJ, Evans R, Kovar IZ, Holton AF, Halliwell B. Bleomycin-detectable iron in the plasma of premature and full-term neonates. FEBS Lett. 1992;303:210–2.

    PubMed  CAS  Google Scholar 

  60. Gutteridge JMC. Ferrous ions detected in cerebrospinal fluid by using bleomycin and DNA damage. Clin Sci. 1992;82:315–20.

    PubMed  CAS  Google Scholar 

  61. Esposito BP, Breuer W, Slotki I, Cabantchik ZI. Labile iron in parenteral iron formulations and its potential for generating plasma nontransferrin-bound iron in dialysis patients. Eur J Clin Invest. 2002;32:42–9.

    PubMed  CAS  Google Scholar 

  62. Singh S, Hider RC, Porter JB. A direct method for quantification of non-transferrin-bound iron. Anal Biochem. 1990;186:320–3.

    PubMed  CAS  Google Scholar 

  63. Kolb AM, Smit NP, Lentz-Ljuboje R, Osanto S, van Pelt J. Non-transferrin bound iron measurement is influenced by chelator concentration. Anal Biochem. 2009;385:13–9.

    PubMed  CAS  Google Scholar 

  64. Jacobs EM, Hendriks JC, van Tits BL, Evans PJ, Breuer W, Liu DY, et al. Results of an international round robin for the quantification of serum non-transferrin-bound iron: need for defining standardization and a clinically relevant isoform. Anal Biochem. 2005;341:241–50.

    PubMed  CAS  Google Scholar 

  65. Zhang D, Okada S, Kawabata T, Yasuda T. An improved simple colorimetric method for quantification of non-transferrin-bound iron in serum. Biochem Mol Biol Int. 1995;35:635–41.

    PubMed  CAS  Google Scholar 

  66. Collins KE, Collins CH, Bertran CA, Dolan J. Stainless steel surfaces in LC systems, Part 1-corrosion and erosion. LC GC Int. 2000;13:464–70.

    CAS  Google Scholar 

  67. Sasaki K, Ikuta K, Tanaka H, Ohtake T, Torimoto Y, Fujiya M, et al. Improved quantification for non-transferrin-bound iron measurement using high-performance liquid chromatography by reducing iron contamination. Mol Med Rep. 2011;4:913–8.

    CAS  Google Scholar 

  68. Jittangprasert P, Wilairat P, Pootrakul P. Comparison of colorimetry and electrothermal atomic absorption spectroscopy for the quantification of non-transferrin bound iron in human sera. Southeast Asian J Trop Med Public Health. 2004;35:1039–44.

    PubMed  CAS  Google Scholar 

  69. Sharma M, Gohil NK. Interaction of azotobactin with blocking and mobilizing agents in NTBI assay. Mol BioSyst. 2010;6:1941–6.

    PubMed  CAS  Google Scholar 

  70. Chau L. Iron and atherosclerosis. Proceedings of the national science council, Republic of China—Part B. Life Sci. 2000;24:151–5.

  71. Meyers DG. The iron hypothesis: Does iron play a role in atherosclerosis? Transfusion. 2000;40:1023–9.

    PubMed  CAS  Google Scholar 

  72. Gackowski D, Kruszewski M, Jawien A, Ciecierski M, Olinski R. Further evidence that oxidative stress may be a risk factor responsible for the development of atherosclerosis. Free Radic Biol Med. 2001;31:542–7.

    PubMed  CAS  Google Scholar 

  73. Mohan S, Kalia K, Mannari J. Diabetic nephropathy and associated risk factors for renal deterioration. Int J diabetes Dev Ctries. 2011;32:52–9.

    Google Scholar 

  74. Horwitz L, Rosenthal E. Iron-mediated cardiovascular injury. Vasc Med. 1999;4:93–9.

    PubMed  CAS  Google Scholar 

  75. Pai B, Pai MP, Depczynski J, McQuade CR, Mercier RC. Nontransferrin-bound iron is associated with enhanced Staphylococcus aureus growth in hemodialysis patients receiving intravenous iron sucrose. Am J Nephrol. 2006;26:304–9.

    PubMed  Google Scholar 

  76. Cabantchik ZI, Breuer W, Zanninelli G, Cianciulli P. LPI-labile plasma iron in iron overload. Best Pract Res Clin Haematol. 2005;18:277–87.

    PubMed  CAS  Google Scholar 

  77. Koppenol WH. The Haber–Weiss cycle—70 years later. Redox Rep. 2001;6:229–34.

    PubMed  CAS  Google Scholar 

  78. Fridovich I. Oxygen toxicity: a radical explanation. J Exp Biol. 1998;201:1203–9.

    PubMed  CAS  Google Scholar 

  79. Liochev SI, Fridovich I. The relative importance of HO. and ONOO in mediating the toxicity of O. Free Radic Biol Med. 1999;26:777–8.

    PubMed  CAS  Google Scholar 

  80. Termini J. Hydroperoxide-induced DNA. Damage and mutations. Mutat Res. 2000;450:107–24.

    PubMed  CAS  Google Scholar 

  81. Sullivan JL. Iron and the sex difference in heart disease risk. Lancet. 1981;1:1293–4.

    PubMed  CAS  Google Scholar 

  82. Schafer AI, Cheron RG, Dluhy R, Cooper B, Gleason RE, Soeldner JS, et al. Clinical consequences of acquired transfusional iron overload in adults. N Engl J Med. 1981;304:319–24.

    PubMed  CAS  Google Scholar 

  83. Ascherio A, Willett WC, Rimm EB, Giovannucci EL, Stampfer MJ. Dietary iron intake and risk of coronary disease among men. Circulation. 1994;89:969–74.

    PubMed  CAS  Google Scholar 

  84. Lee DH, Folsom AR, Jacobs DRJ. Iron, zinc, and alcohol consumption and mortality from cardiovascular diseases: the Iowa Women’s Health Study. Am J Clin Nutr. 2005;81:787–91.

    PubMed  CAS  Google Scholar 

  85. van der ADL, Peeters PH, Grobbee DE, Marx JJ, van der Schouw YT. Dietary haem iron and coronary heart disease in women. Eur Heart J. 2005;26:257–62.

  86. Ramakrishnan U, Kuklina E, Stein AD. Iron stores and cardiovascular disease risk factors in women of reproductive age in the United States. Am J Clin Nutr. 2002;76:1256–60.

    PubMed  CAS  Google Scholar 

  87. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999;340:115–26.

    PubMed  CAS  Google Scholar 

  88. Salvemini D, Wang ZQ, Bourdon DM, Stern MK, Currie MG, Manning PT. Evidence of peroxynitrite involvement in the carrageenan-induced rat paw edema. Eur J Pharmacol. 1996;303:217–20.

    PubMed  CAS  Google Scholar 

  89. Cuzzocrea S, Zingarelli B, Costantino G, Szabo A, Salzman AL, Caputi AP, et al. Beneficial effects of 3-aminobenzamide, an inhibitor of poly (ADP-ribose) synthetase in a rat model of splanchnic artery occlusion and reperfusion. Br J Pharmacol. 1997;121:1065–74.

    PubMed  CAS  Google Scholar 

  90. Leake D, Rankin S. The oxidative modi. Cation of low-density lipoproteins by macrophages. Biochem J. 1990;270:741–8.

    PubMed  CAS  Google Scholar 

  91. Knight JA. Free radicals, antioxidants, aging and disease. Washington, DC: AACC Press; 1999.

    Google Scholar 

  92. Praticó D, Pasin M, Barry OP, Ghiselli A, Sabatino G, Iuliano L, et al. Iron-dependent human platelet activation and hydroxyl radical formation: involvement of protein kinase C. Circulation. 1999;99:3118–24.

    PubMed  Google Scholar 

  93. Oudit GY, Trivieri MG, Khaper N, Husain T, Wilson GJ, Liu P, et al. Taurine supplementation reduces oxidative stress and improves cardiovascular function in an iron-overload murine model. Circulation. 2004;109:1877–85.

    PubMed  CAS  Google Scholar 

  94. Voogd A, Sluiter W, Koster JF. The increased susceptibility to hydrogen peroxide of the (post-)ischemic rat heart is associated with the magnitude of the low molecular weight iron pool. Free Radic Biol Med. 1994;16:453–8.

    PubMed  CAS  Google Scholar 

  95. Kartikasari AE, Georgiou NA, Visseren FL, van Kats-Renaud H, van Asbeck BS, Marx JJ. Intracellular labile iron modulates adhesion of human monocytes to human endothelial cells. Arterioscler Thromb Vasc Biol. 2004;24:2257–62.

    PubMed  CAS  Google Scholar 

  96. Koo SW, Casper KA, Otto KB, Gira AK, Swerlick RA. Iron chelators inhibit VCAM-1 expression in human dermal microvascular endothelial cells. J Invest Dermatol. 2003;120:871–9.

    PubMed  CAS  Google Scholar 

  97. Zhang WJ, Frei B. Intracellular metal ion chelators inhibit TNF alpha-induced SP-1 activation and adhesion molecule expression in human aortic endothelial cells. Free Radic Biol Med. 2003;34:674–82.

    PubMed  CAS  Google Scholar 

  98. Danesh J, Appleby P. Coronary heart disease and iron status: meta-analyses of prospective studies. Circulation. 1999;99:852–4.

    PubMed  CAS  Google Scholar 

  99. Derstine JL, Murray-Kolb LE, Yu-Poth S, Hargrove RL, Kris-Etherton PM, Beard JL. Iron status in association with cardiovascular disease risk in 3 controlled feeding studies. Am J Clin Nutr. 2003;77:56–62.

    PubMed  CAS  Google Scholar 

  100. Baer DM, Tekawa IS, Hurley LB. Iron stores are not associated with acute myocardial infarction. Circulation. 1994;89:2915–8.

    PubMed  CAS  Google Scholar 

  101. Corti MC, Guralnik JM, Salive ME, Ferrucci L, Pahor M, Wallace RB, et al. Serum iron level, coronary artery disease, and all-cause mortality in older men and women. Am J Cardiol. 1997;79:120–7.

    PubMed  CAS  Google Scholar 

  102. Knuiman MW, Divitini ML, Olynyk JK, Cullen DJ, Bartholomew HC. Serum ferritin and cardiovascular disease: a 17-year follow-up study in Busselton Western Australia. Am J Epidemiol. 2003;158:144–9.

    PubMed  CAS  Google Scholar 

  103. Sempos CT, Looker AC, Gillum RE, Mc-Gee DL, Vuong CV, Johnson CL. Serum ferritin and death from all causes and cardiovascular disease: the NHANES II Mortality study. Ann Epidemiol. 2000;10:441–8.

    PubMed  CAS  Google Scholar 

  104. Andrews NC. The iron transporter DMT 1. Int J Biochem Cell Biol. 1999;31:991–4.

    PubMed  CAS  Google Scholar 

  105. Dandona P, Hussain MA, Varghese Z, Politis D, Flynn DM, Hoffbrand AV. Insulin resistance and iron overload. Ann Clin Biochem. 1983;20:77–9.

    PubMed  Google Scholar 

  106. Mendler MH, Turlin B, Moirand R, Jouanolle AM, Sapey T, Guyader D, et al. Insulin resistance-associated hepatic iron overload. Gastroenterology. 1999;117:1155–63.

    PubMed  CAS  Google Scholar 

  107. Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia. 2001;44:129–46.

    PubMed  CAS  Google Scholar 

  108. Jackson P, Loughrey CM, Lightbody JH, McNamee PT, Young IS. Effect of hemodialysis on total antioxidant capacity and serum antioxidants in patients with chronic renal failure. Clin Chem. 1995;41:1135–8.

    PubMed  CAS  Google Scholar 

  109. Redmon JB, Pyzdrowski KL, Robertson RP. No effect of deferoxamine therapy on glucose homeostasis and insulin secretion in individuals with NIDDM and elevated serum ferritin. Diabetes. 1993;42:544–9.

    PubMed  CAS  Google Scholar 

  110. Nankivell BJ, Boadle RA, Harris DCH. Iron accumulation in human chronic renal disease. Am J Kidney Dis. 1992;20:580–4.

    PubMed  CAS  Google Scholar 

  111. Shah SV, Baliga R, Rajapurkar M, Fonseca VA. Oxidants in chronic kidney disease. J Am Soc Nephrol. 2007;18:16–28.

    PubMed  CAS  Google Scholar 

  112. Descamps-Latscha B, Witko-Sarsat V, Nguyen-Khoa T, Nguyen AT, Gausson V, Mothu V, et al. Early prediction of IgA nephropathy progression: proteinuria and AOPP are strong prognostic markers. Kidney Int. 2004;66:1606–12.

    PubMed  CAS  Google Scholar 

  113. Lin JL, LinTan DT, Hsu KH, Yu CC. Environmental lead exposure and progression of chronic renal diseases in patients without diabetes. N Engl J Med. 2003;348:277–86.

    PubMed  CAS  Google Scholar 

  114. Prus E, Fibach E. Uptake of non-transferrin iron by erythroid cells. Anemia. 2011;2011 (Article ID 945289, 8 pages).

  115. Loken MR, Shah VO, Dattilio KL, Civin CI. Flow cytometric analysis of human bone marrow II. Normal B lymphocyte development. Blood. 1987;70:1316–24.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. S. S. Ramavataram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, M., Ramavataram, D.V.S.S. Non Transferrin Bound Iron: Nature, Manifestations and Analytical Approaches for Estimation. Ind J Clin Biochem 27, 322–332 (2012). https://doi.org/10.1007/s12291-012-0250-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-012-0250-7

Keywords

Navigation