Skip to main content

Advertisement

Log in

Nanotechnology: A Revolution in Cancer Diagnosis

  • Review Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Nanotechnology has brought revolution in cancer detection and treatment. It has capability to detect even a single cancerous cell in vivo and deliver the highly toxic drugs to the cancerous cells. Nanoshells, carbon nanotubes, quantum dots, supermagnetic nanoparticles, nano wires, nanodiamonds, dandrimers, and recently synthesized nanosponges are some of the materials used for cancer detection. Using specific cross linkers, such as specific antibodies against cancer cells individual cancer cells can be located. With the aid of a novel set of lipid-coated, targeted quantum dots a method for quantifying multiple specific biomarkers on the surfaces of individual cancer cells was also developed. This approach to quantitative biomarker detection stands to improve the histopathology methods used to diagnosis pancreatic and other cancers and enable the development of methods to spot cancer cells circulating in the blood stream. Certain nano materials can also deliver cancer drugs at the site so the drug toxicity can also be reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mousa SA, Bharali DJ, Armstrong D. From nutraceuticals to pharmaceuticals to nanopharmaceuticals: a case study in angiogenesis modulation during oxidative stress. Mol Biotechnol. 2007;37:72–80.

    Article  PubMed  CAS  Google Scholar 

  2. Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7:771–82.

    Article  PubMed  CAS  Google Scholar 

  3. Frank A, June-Wha R, Jerome PR, Radovic-Moreno AF, Robert L, Omid CF. New frontiers in nanotechnology for cancer treatment. Urol Oncol Semin Orig Invest. 2008;26:74–85.

    Article  Google Scholar 

  4. Koning GA, Krijger GC. Targeted multifunctional lipid-based nanocarriers for image-guided drug delivery. Anticancer Agents Med Chem. 2007;7:425–40.

    Article  PubMed  CAS  Google Scholar 

  5. Ranjita M, Sarbari A, Sanjeeb KS. Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discovery Today. 2010;15:19–20.

    Google Scholar 

  6. Kewal K, Jain T. Nanotechnology in clinical laboratory diagnostics, review. Clin Chim Acta. 2005;358:37–54.

    Article  Google Scholar 

  7. Hirsch LR, Gobin AM, Lowery AR, et al. Metal nanoshells. Ann Biomed Eng. 2006;34:15–22.

    Article  PubMed  Google Scholar 

  8. Loo C, Lowery A, Halas N, West J, Drezek R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 2005;5(4):709–11.

    Article  PubMed  CAS  Google Scholar 

  9. Avouris P, Chen Z, Perebeinos V. Carbon-based electronics. Nat Nanotechnol. 2007;2(10):605–15.

    Article  PubMed  CAS  Google Scholar 

  10. Bakry R, Vallant RM, Najam-ul-Haq M, Rainer M, Szabo Z, Huck CW, Bonn GK. Medicinal applications of fullerenes. Int J Nanomed. 2007;2(4):639–49.

    CAS  Google Scholar 

  11. Bosi S, Da Ros T, Spalluto G, Prato M. Fullerene derivatives: an attractive tool for biological applications. Eur J Med Chem. 2003;38:913–23.

    Article  PubMed  CAS  Google Scholar 

  12. Guldi DM, Prato M. Excited-state properties of C(60) fullerene derivatives. Acc Chem Res. 2000;33(10):695–703.

    Article  PubMed  CAS  Google Scholar 

  13. Ji SR, Liu C, Zhang B, Yang F, Xu J, Long J, Jin C, Fu DL, Ni QX, Yu XJ. Carbon nanotubes in cancer diagnosis and therapy. Biochim Biophys Acta. 2010;1806:29–35.

    PubMed  CAS  Google Scholar 

  14. Kam NW, O’Connell M, Wisdom JA, Dai H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA. 2005;102(33):11600–5.

    Article  PubMed  CAS  Google Scholar 

  15. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science. 1998;281:2013–6.

    Article  PubMed  CAS  Google Scholar 

  16. Schroeder JE, Shweky I, Shmeeda H, Banin U, Gabizon A. Folate-mediated tumor cell uptake of quantum dots entrapped in lipid nanoparticles. J Control Release. 2007;124:2834.

    Article  Google Scholar 

  17. Jayagopal A, Yan RS, Blakemore JL, Linton MF, Fazio S, Haselton FR. Quantum dot mediated imaging of atherosclerosis. Nanotechnology. 2009;20:165102.

    Article  PubMed  Google Scholar 

  18. Maysinger D. Nanoparticles and cells: good companions and doomed relationships. Org Biomol Chem. 2007;5:2335–42.

    Article  PubMed  CAS  Google Scholar 

  19. Jiang W, Singhal A, Kim BYS, Zheng J, Rutka JT, Wang C, Chan WCW. Assessing near-infrared quantum dots for deep tissue, organ, and animal imaging applications. J Assoc Lab Autom. 2008;13:6–12.

    Article  CAS  Google Scholar 

  20. Zimmer JP, Kim SW, Ohnishi S, Tanaka E, Frangioni JV, Bawendi MG. Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging. J Am Chem Soc. 2006;128:2526–7.

    Article  PubMed  CAS  Google Scholar 

  21. Cai W, Chen X. Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging. Nat Protoc. 2008;3(1):89–96.

    Article  PubMed  CAS  Google Scholar 

  22. Smith AM, Dave S, Nie S, True L, Gao X. Multicolor quantum dots for molecular diagnostics of cancer. Expert Rev Mol Diagn. 2006;6:231–44.

    Article  PubMed  CAS  Google Scholar 

  23. Tada H, Higuchi H, Wanatabe TM, Ohuchi N. In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res. 2007;67(3):1138–44.

    Article  PubMed  CAS  Google Scholar 

  24. Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, et al. Hyperthermia in combined treatment of cancer. Lancet Oncol. 2002;3(8):487–97.

    Article  PubMed  CAS  Google Scholar 

  25. Harris JM, Martin NE, Modi M. Pegylation: a novel process for modifying pharmacokinetics. Clin Pharmcokinetics. 2001;40:539–51.

    Article  CAS  Google Scholar 

  26. Kubo T, Sugita T, Shimose S, Nitta Y, Ikuta Y, Murakami T. Targeted delivery of anticancer drugs with intravenously administered magnetic liposomes in osteosarcoma-bearing hamsters. Int J Oncol. 2000;17(2):309–15.

    PubMed  CAS  Google Scholar 

  27. Johannsen M, Gneveckow U, Thiesen B, Taymoorian K, Cho CH, Waldofner N, Scholz R, Jordan A, Loening SA, Wust P. Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol. 2007;52:1653–61.

    Article  PubMed  Google Scholar 

  28. Neuwelt E, Varallyay P, Bago A, Muldoon L, Nesbit G, Nixon R. Imaging of iron oxide nanoparticles by MR and light microscopy in patients with malignant brain tumours. Neuropathol Appl Neurobiol. 2004;30(5):456–71.

    Article  PubMed  CAS  Google Scholar 

  29. Kupsch A, Earl C. Neurosurgical interventions in the treatment of idiopathic Parkinson disease: neurostimulation and neural implantation. J Mol Med. 1999;77(1):178–84.

    Article  PubMed  CAS  Google Scholar 

  30. Lee Min-Ho, Lee Dong-Ho, Jung Suk-Won, Lee Kuk-Nyung, Park YoungSoo, Seong Woo-Kyeong. Measurements of serum C-reactive protein levels in patients with gastric cancer and quantification using silicon nanowire arrays. Nanomed Nanotechnol Biol Med. 2010;6:78–83.

    Article  CAS  Google Scholar 

  31. Krueger A. New carbon materials: biological applications of functionalized nanodiamond materials. Chemistry. 2008;14:1382–90.

    Article  PubMed  CAS  Google Scholar 

  32. Enoki T, Takai K, Osipov V, Baidakova M, Vul A. Nanographene and nanodiamond; new members in the nanocarbon family. Chem Asian J. 2009;4:796–804.

    Article  PubMed  CAS  Google Scholar 

  33. Holt KB. Diamond at the nanoscale: applications of diamond nanoparticles from cellular biomarkers to quantum computing. Philos Transact A Math Phys Eng Sci. 2007;365:2845–61.

    Article  PubMed  CAS  Google Scholar 

  34. Vaijayanthimala V, Chang HC. Functionalized fluorescent nanodiamonds for biomedical applications. Nanomed. 2009;4(1):47–55.

    Article  CAS  Google Scholar 

  35. Fu CC, Lee HY, Chen K, Lim TS, Wu HY, Lin PK, et al. Characterization and application of single flourescent ananodiamonds as cellular biomarkers. Proc Natl Acad Sci USA. 2007;104:727–32.

    Article  PubMed  CAS  Google Scholar 

  36. Chang YP, Pinaud F, Antelman J, Weiss S. Tracking bio-molecules in live cells using quantum dots. J Biophotonics. 2008;1:287–98.

    Article  PubMed  CAS  Google Scholar 

  37. Chang YR, Lee HY, Chen K, Chang CC, Tsai DS, Fu CC, et al. Mass production and dynamic imaging of fluorescent nanodiamonds. Nat Nanotechnol. 2008;3(5):284–8.

    Article  PubMed  CAS  Google Scholar 

  38. Cavalli R, Trotta F, Tumiatti V. Cyclodextrin-based nanosponges for drug delivery. J Incl Phenom Macrocycl Chem. 2006;56:209–13.

    Article  CAS  Google Scholar 

  39. Guo L, Gao G, Liu X, Liu F. Preparation and characterization of TiO2 nanosponge. Mater Chem Phys. 2008;111:322–5.

    Article  CAS  Google Scholar 

  40. Swaminathan S, Vavia PR, Trotta F, Torne S. Formulation of betacyclodextrin based nanosponges of itraconazole. J Incl Phenom Macrocycl Chem. 2007;57:337–41.

    Article  Google Scholar 

  41. Sampathkumar SG, Yarema KJ. Targeting cancer cells with dendrimers. Chem Biol. 2005;12:5–6.

    Article  PubMed  CAS  Google Scholar 

  42. Lee CC, MacKay JA, Frechet JM, Szoka FC. Designing dendrimers for biological applications. Nat Biotechnol. 2005;23:1517–26.

    Article  PubMed  CAS  Google Scholar 

  43. Gillies ER, Frechet JMJ. Dendrimers and dendritic polymers in drug delivery. Drug Discov Today. 2005;10:35–43.

    Article  PubMed  CAS  Google Scholar 

  44. Shi X, Wang S, Meshinchi S, Van Antwerp ME, Bi X, Lee I, et al. Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging. Small. 2007;3:1245–52.

    Article  PubMed  CAS  Google Scholar 

  45. Link S, El-Sayed MA. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem. 2000;19:409–53.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. D. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaishree, V., Gupta, P.D. Nanotechnology: A Revolution in Cancer Diagnosis. Ind J Clin Biochem 27, 214–220 (2012). https://doi.org/10.1007/s12291-012-0221-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-012-0221-z

Keywords

Navigation