Skip to main content
Log in

Numerical simulation of self heating during stretch blow moulding of PET: viscohyperelastic modelling versus experimental results

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

During the stretch blow moulding (SBM) process of polyethylene terephthalate (PET) bottle, high viscous dissipation generates self heating phenomena. Since the influence of temperature on polymer’s behavior is important, it is necessary to evaluate the self heating values in order to manage accurately the simulation of the process. An anisotropic visco-hyperelastic model has been developed to manage numerical simulations of free blowing. The model takes into account the anisotropy and the effect of the temperature. It has been computed in a user-interface VUMAT implemented in the software ABAQUS/Explicit. The identification of the model is based on experimental data of biaxial tension tests. We identified the characteristics taking into account the self-heating effect by a semi analytical process followed by an adjustment using finite element. For sake of validation, PET preforms have been blown from different initial temperature and followed using a thermal camera. The increase of temperature is measured by comparing initial temperature and final temperature. Comparison between the experimental and numerical simulations is discussed and influence of initial temperature or blowing pressure is highlighted in a large numerical investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yousefi A, DiRaddo R, Bendada A Simulation of the mobile preform reheat in injection stretch blow moulding process. Polymer Proceeding Society 17. Montreal, Canada. May 21–24 2001

  2. Haung HX, Yin ZS, Liu JH (2007) Visualisation study and analysis on preform growth in polyethylene terephthalate stretch blow moulding. J Appl Polym Sci 103(1):564–573

    Article  Google Scholar 

  3. Billon N, Erner A, Gorlier E (2005) Kinematics of stretch blow moulding and plug assisted thermoforming of polymers; experimental study, Polymer Proceeding Society 21. Leipzig, Germany

  4. Nagarjappa CC (2012) PhD. Thesis, Developing and validating stretch blow moulding simulation through free blow experiments, Queens University Belfast, School of Mechanical & Aerospace Engineering

  5. Menary GH, Tan CW, Harkin-Jones EMA, Armstrong CG, Martin PJ (2012) Biaxial deformation of PET at conditions applicable to the stretch blow molding process. Polym Eng Sci 52(3):671–688

    Article  Google Scholar 

  6. Chevalier L, Luo YM, Monteiro E, Menary G (2012) Onvisco-elastic modelling of polyethylene terephthalate behaviour during multiaxial elongations slightly over the glass transition temperature. Mech Mater 52:103–116

    Article  Google Scholar 

  7. Luo YM, Chevalier L (2019) On induced properties and self heating during free blowing of PET preform. Int Polym Process 34(3):330–338

    Article  Google Scholar 

  8. Marco Y (2003) Caractérisation Multi-Axiale du Comportement et de la Micro-Structure d’un Semi-Cristallin: Application au Cas du P.E.T., PhD Thesis, ENS Cachan, Cachan

  9. Bedoui F (2005) Etude du Comportement Elastique et Viscoélastique Linéaire des Polymères Semi-Cristallins par Approche Micromécanique, PhD Thesis, ENSAM, Paris

  10. Gong YH (2018) Sur l’Analyse Multiéchelle du Changement de Morphologie du PET sous l’effet de la Température ou des Sollicitations Mécaniques, PhD Thesis, University Paris-Est, Marne-la-Vallée

  11. Lebaudy P, Saiter JM, Grenet J, Vautier C (1995) Temperature distribution in poly(ethylene terephthalate) plate undergoing heat treatment. Diffusion Influence and Application, Polymer 36(6):1217–1221

    Google Scholar 

  12. Schmidt FM, Le Maoult Y, Monteix S (2003) Modelling of infrared heating of thermoplastic sheet used in thermoforming process. J Mater Process Technol 143–144:225–231

    Article  Google Scholar 

  13. Monteix S, Schmidt F, Le Maoult Y (2001) Experimental study and numerical simulation of preform or sheet exposed to infrared radiative heating. J Mater Process Technol 119(1–3):90–97

    Article  Google Scholar 

  14. Huang HX, Li YZ, Deng YH (2006) Online real-time acquisition for transient temperature in blow molding. Polym Test 25(6):839–845

    Article  Google Scholar 

  15. Salomeia YM, Menary GH, Armstrong CG (2013) Experimental investigation of stretch blow molding, part 1: instrumentation in an industrial environment. Advances in Polymer Technology 32(S1):E771–E783

    Article  Google Scholar 

  16. Menary G (2012) The effect of temperature, strain rate and strain on the induced mechanical properties of Biaxially stretched PET. The 17th annual ESAFORM conference on material forming, Erlangen, German, 14–16 March 2012

  17. Huang H-X, Deng Y-H, Huang Y-F (2005) Temperature profiles within reheated preform in stretch blow molding. ANTEC’05, Boston, Massachusetts

  18. Champin C (2007) Modélisation 3D du chauffage par rayonnement infrarouge et de l’étirage soufflage de corps creux en P.E.T., PhD thesis, Ecole Nationale Supérieure des Mines de Paris

  19. Michaeli W, Papst W (2004) FE-Analysis of the Two-Step Stretch Blow Molding Process. in SPE ANTEC Technical Papers 30 , Chicago, USA

  20. Martin L, Stracovsky D, Laroche D, Bardetti A, Ben-Yedder R, DiRaddo R (1999) Modeling and experimental validation of the stretch blow molding of PET. In SPE ANTEC Technical Papers, New York

  21. Cosson B, Schmidt F, Le Maoult Y, Bordival M (2011) Infrared heating stage simulation of semi-transparent media (PET) using ray tracing method. Int J Mater Form 4(1):1–10

    Article  Google Scholar 

  22. Luo YM, Chevalier L, Utheza F, Monteiro E (2013) Numerical simulation of the thermodependant visco-hyperelastic behaviour of PET near the Glass Transition Temperature: prediction of the self heating during biaxail tension test, Polymer Eng. & Science, on line

  23. Luo YM, Chevalier L, Utheza F, Nicolas X (2014) Simplified modelling of the infrared heating involving the air convection effect before the injection stretch blowing moulding of PET preform, ESAFORM, Espoo, Finland, May 2014

  24. Luo YM, Chevalier L, Monteiro E, Utheza F (2017) Self heating during stretch blow molding: an experimental numerical comparison, the 20th international ESAFORM conference on material forming, Dublin, Ireland, April 26-28, 2017

  25. Schmidt FM, Agassant JF, Bellet M (1998) Experimental study and numerical simulation of the injection stretch/blow moulding process. Poly Eng Sci 38(9):1399–1412

    Article  Google Scholar 

  26. Menary GH, Tan CW, Picard M, Billon N Armstrong CG, Harkin- Jones EMA (2007) Numerical simulation of injection stretch blow moulding: comparison with experimental free blow trials. 10th ESAFORM conference on material forming, AIPConf Proc, vol 907, pp 939–944

  27. Salomeia YM (2009) PhD Thesis, Improved understanding of injection stretch blow moulding through instrumentation, process monitoring and modelling. Queen’s University of Belfast, School of mechanical & Aerospace Engineering

  28. Bordival M, Schmidt FM, Le Maoult Y, Velay V (2009) Optimization of preform temperature distribution for stretch-blow moulding of PET bottles: infrared heating and blowing modelling. Polym Eng Sci 49(4):783–793

    Article  Google Scholar 

  29. Nixon J, Menary GH, Yan S (2017) Finite element simulations of stretch-blow moulding with experimental validation over a broad process window. Int J Mater Form 10(5):793–809

    Article  Google Scholar 

  30. Barakos G, Mitsoulis E (1996) Non-isothermal viscoelastic simulations of extrusion through dies and prediction of the bending phenomenon. J Nonnewton Fluid Mech 62(1):55–79

    Article  Google Scholar 

  31. Marckman G, Verron E, Peseux B (2001) Finite element analysis of blow molding and thermoforming using a dynamic explicit procedure. Polym Eng Sci 41(3):426–439

    Article  Google Scholar 

  32. Buckley CP, Jones DP (1996) Hot-drawing of poly(ethylene terephthalate) under biaxial stress: application of a three-dimensional glass-rubber constitutive model. Polymer 37(12):2403–2414

    Article  Google Scholar 

  33. Luo Y-M, Chevalier L, Monteiro E, Yan S, Menary G (2020) Simulation of the injection stretch blow moulding process: an anisotropic visco-hyperelastic model for PET behavior. Polym Eng Sci 60(4):823–831

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Mei Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, YM., Chevalier, L., Monteiro, E. et al. Numerical simulation of self heating during stretch blow moulding of PET: viscohyperelastic modelling versus experimental results. Int J Mater Form 14, 703–714 (2021). https://doi.org/10.1007/s12289-020-01565-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-020-01565-w

Keywords

Navigation