Skip to main content
Log in

Assessment of different ductile damage models and experimental validation

  • SI: Modeling Materials and Processes, in Memory of Professor José J. Grácio
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

The tough fuel economy and emissions standards facing automotive industry creates the need for lightweight construction and the use of new generation of materials. However, the use of non-conventional materials leads to difficulties in the prediction of material behaviour during sheet metal forming processes, including damage and formability limits, thus challenging the numerical simulation. This paper seeks to contribute in the prediction of fracture on sheet metal alloys. Three constitutive damage models are used, GTN, Johnson Cook and Lemaitre, to simulate, as realistically as possible, the mechanical behaviour of the sheet metal material. The corresponding parameters of damage models are identified using an inverse analysis procedure, based on experimental test data. Finally, to validate and verify the applicability of the studied damage models to predict fracture, experiments are compared with FE simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Bruschi S, Altan T, Banabic D, Bariani PF, Brosius A, Cao J, Ghiotti A, Khraisheh M, Merklein M, Tekkaya AE (2014) Testing and modelling of material behaviour and formability in sheet metal forming. CIRP Annals - Manufacturing Technology 63(2):727–749

    Article  Google Scholar 

  2. Atzema EH (2017) Formability of auto components. Design, Metallurgy, Processing and Application, pp 47–93

  3. Teixeira P, Santos AD, César de Sá J, Andrade Pires FM, Barata da Rocha A (2009) Sheet metal formability evaluation using continuous damage mechanics. Int J Mater Form 99:463–466

    Article  Google Scholar 

  4. Pradeau A, Thuillier S, Yoon JW (2016) Prediction of failure in bending of an aluminium sheet alloy. Int J Mech Sci 119:23–35

    Article  Google Scholar 

  5. Stoughton TB, Yoon JW (2011) A new approach for failure criterion for sheet metals. Int J Plast 27 (3):440–459

    Article  MATH  Google Scholar 

  6. Cao T-S, Bobadilla C, Montmitonnet P, Bouchard P-O (2016) A comparative study of three ductile damage approaches for fracture prediction in cold forming processes. J Mater Process Tech 216:385–404

    Article  Google Scholar 

  7. Aboutalebi FH, Farzin M, Mashayekhi M (2012) Numerical predictions and experimental validations of ductile damage evolution in sheet metal forming processes. Acta Mech Solida Sin 25(6):638–650

    Article  Google Scholar 

  8. Watanabe A, Fujikawa S, Ikeda A, Shiga N (2014) Prediction of ductile fracture in cold forging. Procedia Engineering 81:425–430

    Article  Google Scholar 

  9. Bai Y, Wierzbicki T (2015) A comparative study of three groups of ductile fracture loci in the 3D space. Eng Fract Mech 135:147–167

    Article  Google Scholar 

  10. Wierzbicki T, Bao Y, Lee YW, Bai Y (2005) Calibration and evaluation of seven fracture models. Int J Mech Sci 47(4–5):719–743

    Article  Google Scholar 

  11. Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21:31–48

    Article  Google Scholar 

  12. Gurson L (1977) Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media. J Mater Process Tech 99:2–15

    Article  Google Scholar 

  13. Tvergaard V (1982) On localization in ductile materials containing spherical voids. Int J Fracture 18:237–252

    Google Scholar 

  14. Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32:157–169

    Article  Google Scholar 

  15. Lemaitre J (1985) A continuous damage mechanics model for ductile fracture. J Eng Mater Tech 107:83–89

    Article  Google Scholar 

  16. Kami A, Dariani BM, Vanini AS, Comsa DS, Banabic D (2014) Application of a GTN damage model to predict the fracture of metallic sheets subjected to deep-drawing. Proc Rom Acad Ser A 15(3):300–309

    Google Scholar 

  17. Saxena RK, Gautam SS, Dixit PM (2010) Numerical Simulation of Fracture in cup drawing. Int J Mater Form 3(1):117–120

    Article  Google Scholar 

  18. Teixeira P, Santos AD, Andrade Pires FM, César de Sá J (2006) Finite element prediction of ductile fracture in sheet metal forming processes. J Mater Process Tech 177:278–281

    Article  Google Scholar 

  19. Roth CC, Mohr D (2016) Ductile fracture experiments with locally proportional loading histories. Int J Plasticity 79:328–354

    Article  Google Scholar 

  20. (2001). Selection and identification of elastoplastic models for the materials used in the benchmarks, 18-Months Progress Report, Inter-regional IMS contract Digital Die Design Systems, IMS 1999 000051

  21. Santos AD, Teixeira P, Barata da Rocha A, Barlat F, Moon YH, Lee M-G (2010) On the determination of flow stress using bulge test and mechanical measurement. In: 10th international conference on NUMIFORM AIP

  22. Reis LC, Oliveira MC, Santos AD, Fernandes JV (2016) On the determination of the work hardening curve using the bulge test. Int J Mech Sci 105:158–181

    Article  Google Scholar 

  23. Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J Optim 9(1):112–147

    Article  MathSciNet  MATH  Google Scholar 

  24. Marzbanrad S, Noruzi A, Ahmado SK (2013) Damage modeling in crashworthiness of dual-phase steel. ISME 21:1–6

    Google Scholar 

  25. Wang DA, Chien WY, Liao KC, Pan J, Tang SC (2003) A Gurson yield function for anisotropic porous sheet metals and its applications to failure prediction of aluminum sheets. J Mech 19:161–168

    Article  Google Scholar 

  26. Zhang ZL (1986) A gurson yield function for anisotropic porous sheet metals and its applications to failure prediction of aluminum sheets. Fatigue Fract Eng M 19:561–570

    Article  Google Scholar 

  27. Swift HW (1954) The mechanism of a simple drawing operation. Engineering 178:431–435

    Google Scholar 

  28. César de Sá JM, Areias P, Zheng C (2006) Damage modelling in metal forming problems using an implicit non-local gradient model. Comput Method Appl M 195:6646–6660

    Article  MATH  Google Scholar 

  29. Andrade FXC, César de Sá JM, Pires FMA (2014) Assessment and comparison of non-local integral models for ductile damage. Int J Damage Mech 23(2):261–296

    Article  Google Scholar 

  30. Malcher L, Pires FMA, de Sa JMAC (2012) An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality. Int J Plast 30–31:81–115

    Article  Google Scholar 

  31. Malcher L, Pires FMA, de Sa JMAC (2014) An extended GTN model for ductile fracture under high and low stress triaxiality. Int J Plast 54:193–228

    Article  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the funding of SciTech - Science and Technology for Competitive and Sustainable Industries, R &D project NORTE-01-0145-FEDER-000022 cofinanced by Programa Operacional Regional do Norte (”NORTE2020”), through Fundo Europeu de Desenvolvimento Regional (FEDER) and the financial support of FCT - Fundação para a Ciência e Tecnologia, under project PTDC / EMS-TEC / 6400/2014. The first author is also grateful to the FCT for the Doctoral grant SFRH/BD/119362/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Amaral.

Ethics declarations

Conflict of interests

Conflict of Interest for all authors - None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amaral, R., Teixeira, P., Santos, A.D. et al. Assessment of different ductile damage models and experimental validation. Int J Mater Form 11, 435–444 (2018). https://doi.org/10.1007/s12289-017-1381-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-017-1381-4

Keywords

Navigation