Skip to main content

Micromechanical-Based Models for Describing Damage of Ferritic Steels

  • Conference paper
  • First Online:
Recent Trends in Fracture and Damage Mechanics

Abstract

Usually the safety margin against failure for precracked components is calculated with fracture mechanics approaches. Due to several severe limitations of these approaches, it was searched for alternative calculation models. Starting with McClintock and Berg in the sixties, so-called damage models have been developed for describing ductile fracture on the basis of micromechanical processes. The development of such kind of models is in progress now for nearly 50 years, but until today no model is generally accepted and incorporated into the international standards. In an extended introduction, the micromechanical phases of ductile rupture of metal and alloys are presented. Against this background, a summary of the evolution and the different kinds of micromechanical-based model approaches is given. The theoretical background, the advantages/ disadvantages and the limitations of the models are discussed critically. Finally non-local formulations of damage models are presented. Combinations of ductile damage models and models for cleavage to describe fracture in the brittle-ductile transition region are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Manganese sulfides at which voids initiate at low plastic deformations can have a size larger than several μm.

References

  1. Abendroth, M. (2004) Identifikation elastoplastischer und schädigungsmechanischer Materialparameter aus dem Small Punch Test. Dissertation, Technische Universität Bergakademie Freiberg

    Google Scholar 

  2. Aboutayeb, S. M. (2000) Comportement a l’endommagement des materiaux metalliques heterogenes: Simulation et experience. These de doctorat, Universite des Sciences et Technologies de Lille

    Google Scholar 

  3. Acharyya S, Dhar S (2008) A complete GTN model for prediction of ductile failure of pipe. J Mater Sci 43(6):1897–1909

    Article  Google Scholar 

  4. Anderson TL, Stienstra D, Dodds R (1994) A theoretical framework for addressing fracture in the ductile-brittle transition region. ASTM STP 1207:186

    Google Scholar 

  5. ARAMIS 2M (2007) Benutzerinformation - Hardware, Gesellschaft für optische Messtechnik. Braunschweig

    Google Scholar 

  6. Argon A (1975) Cavity formation from inclusions in ductile fracture. Metall Trans A 6A:825–837

    Article  Google Scholar 

  7. Argon A (1975) Seperation of second phase particles in spheroidized 1045 steel, Cu-0.6Pct Cr alloy, and maragin steel in plastic straining. Metall Trans A 6A:839–851

    Article  Google Scholar 

  8. Argon A (1976) Formation of cavities from nondeformable second-phase particles in low temperature ductile fracture. J Eng Mater Technol 60–68 (pub. by the American Society of Mechanical Engineers)

    Google Scholar 

  9. Arndt J, Majedi H, Dahl W (1996) Influence of strain history on ductile failure of steel. Le Journal de Physique IV 06, C6:23–32

    Google Scholar 

  10. Arndt J (1997) Experimentelle und rechnerische Untersuchungen zur Schädigung von Baustählen bei duktilem Versagen. Dissertation, IEHK, RWTH Aachen

    Google Scholar 

  11. Ashby M, Gandhi C, Taplin D (1979) Fracture-mechanism maps and their construction for f.c.c. metals and alloys. Acta Metall 27:699–729

    Article  Google Scholar 

  12. Aurich D, Gerwien P, Häcker R, Hünecke J, Klingbeil D, Krafka H, Künecke G, Ohm K, Veith H, Wossidlo P (1997) Experimentelle und numerische Untersuchungen des statischen und dynamischen Rißwiderstandsverhaltens verschiedener höherfester Baustähle im Temperaturbereich von 20 °C bis 350 °C. 23. MPA-Seminar: Sicherheit und Verfügbarkeit in der Anlagentechnik 1, Universität Stuttgart 14.1–14.24

    Google Scholar 

  13. Baaser H, Gross D (2003) Analysis of void growth in a ductile material in front of a crack tip. Comput Mater Sci 26:28–35

    Article  Google Scholar 

  14. Babout L (2004) Damage initiation in model metallic materials: X-ray tomography and modeling. Acta Mater 52(8):2475–2487

    Article  Google Scholar 

  15. Bai Y, Wierzbicki T (2008) A new model of metal plasticity and fracture with pressure and Lode dependence. Int J Plast 24(6):1071–1096

    Article  MATH  Google Scholar 

  16. Bandstra J, Goto D, Koss D (1998) Ductile failure as a result of a void-sheet instability: experiment and computational modeling. Mater Sci Eng, A 249:46–54

    Article  Google Scholar 

  17. Barnby JT (1967) The initiation of ductile failure by fractured carbides in an austenitic stainless steel. Acta Metall 15:903–909

    Article  Google Scholar 

  18. Batisse R (1987) Ductile fracture of a 508 Cl 3 steel in relation with inclusion content: the benefit of the local approach of fracture and continuum damage mechanics. Nucl Eng Des 105:113–120

    Article  Google Scholar 

  19. Batisse R (1988) Contribution à la modelisation de la rupture ductile des aciers. Dissertation, Université de Technologie de Compiegne

    Google Scholar 

  20. Bauvineau L, Burlet H, Eripret C, Pineau A (1996) Modelling ductile stable crack growth in a C-Mn steel with local approaches. Le J de Physique IV 06(C6):33–42

    Google Scholar 

  21. Bažant Z, Jirásek M (2002) Nonlocal integral formulations of plasticity and damage: survey of progress. J Eng Mech 128(11):1119–1149

    Article  Google Scholar 

  22. Bažant ZP (1984) Imbricate continuum and its variational derivation. J Eng Mech 110(12):1693–1712

    Article  Google Scholar 

  23. Bažant Z, Pijaudier-Cabot G (1988) Nonlocal continuum damage, localization instability and convergence. J Appl Mech 55:287–293

    Article  MATH  Google Scholar 

  24. Beachem CD (1973) The effects of crack tip plastic flow directions upon microscopic dimple shapes. Metall Trans A 6A:377–383

    Google Scholar 

  25. Becker R, Needleman A, Richmond O, Tvergaard V (1988) Void growth and failure in notched bars. J Mech Phys Solids 36(3):317–351

    Article  Google Scholar 

  26. Benzerga A (2002) Micromechanics of coalescence in ductile fracture. J Mech Phys Solids 50:1331–1362

    Article  MATH  Google Scholar 

  27. Benzerga A, Besson J, Pineau A (2004) Anisotropic ductile fracture—part I: experiments. Acta Mater 52(15):4623–4638

    Article  Google Scholar 

  28. Benzerga A, Besson J, Pineau A (2005) How much input is needed from the microstructure to model ductile fracture? Int Conf Fract 11

    Google Scholar 

  29. Benzerga AA, Leblond J-B (2010) Ductile fracture by void growth to coalescence. Adv Appl Mech 44:169

    Article  Google Scholar 

  30. Benzerga A, Besson J, Pineau A (1999) Coalescence-controlled anisotropic ductile fracture. J Eng Mater Technol 121(2):221–229

    Article  Google Scholar 

  31. Bernauer G, Brocks W (2002) Micro-mechanical modelling of ductile damage and tearing—results of a European numerical round robin. Fatigue Fract Eng Mater Struct 25:363–384

    Article  Google Scholar 

  32. Berdin C, Besson J, Bugat S (2004) Local approach to fracture. Paris: les Presses de l’Ecole des mines – ISBN 2-911762-55-X

    Google Scholar 

  33. Berg CA (1969) Plastic dilation and void interaction, inelastic behavior of solids. McGraw-Hill Book Company, New York

    Google Scholar 

  34. Beremin F (1981) Cavity formation from inclusions in ductile fracture of A508 steel. Metall Trans A 12A:723–731

    Article  Google Scholar 

  35. Beremin F (1981) Study of fracture criteria for ductile rupture of A508 steels. In: 5th international conference on fracture, Cannes, pp 809–816

    Google Scholar 

  36. Beremin FM (1981) Experimental and numerical study of the different stages in ducitle rupture: application to crack initiation and stable crack growth, three-dimensional constitutive relations and ductile fracture. North Holland Publishing Company, pp 185–205

    Google Scholar 

  37. Beremin FM (1983) A local criterion for cleavage fracture of a nuclear pressure vessel steel. Metall Trans A 14A:2277–2287

    Article  Google Scholar 

  38. Bernauer G (1997) Einsatz mikromechanischer schädigungsmodelle im sprödduktilen Übergangsbereich. Dissertation, Universität Karlsruhe

    Google Scholar 

  39. Bernauer G, Brocks W, Muehlich U, Steglich D, Werwer M (1999) Hinweise zur Anwendung des Gurson-Tvergaard-Needleman-Modells. Technical note gkss/wmg/99/10, GKSS-Forschungszentrum Geesthacht

    Google Scholar 

  40. Bernauer G, Brocks W, Schmitt W (1999) Modifications of the Beremin model for cleavage fracture in the transition region of a ferritic steel. Eng Fract Mech 64:305–325

    Article  Google Scholar 

  41. Besson J, Steglich D, Brocks W (2001) Modeling of crack growth in round bars and plane strain specimens. Int J Solids Struct 38:8259–8284

    Article  MATH  Google Scholar 

  42. Besson J, Guillemer-Neel C (2003) An extension of the green and gurson models to kinematic hardening. Mech Mater 35:1–18

    Article  Google Scholar 

  43. Besson J, Steglich D, Brocks W (2003) Modeling of plane strain ductile rupture. Int J Plast 19:1517–1541

    Article  MATH  Google Scholar 

  44. Besson J, Shinohara Y, Morgeneyer T, Madi Y (2008) Effect of prestrain on ductility of a X100 pipeline steel. In: Proceedings of the 17th european conference on fracture, pp 757–764

    Google Scholar 

  45. Besson J (2009) Damage of ductile materials deforming under multiple plastic or viscoplastic mechanisms. Int J Plast 25(11):2204–2221

    Article  Google Scholar 

  46. Besson J (2010) Continuum models of ductile fracture: a review. Int J Damage Mech 19(1):3–52

    Article  Google Scholar 

  47. Bishop J, Hill R (1951) A Theory of the plastic distortion of a polycrystalline aggregate under combined stresses. Philos Mag Ser 7:414–427

    Article  MathSciNet  Google Scholar 

  48. Bonora N, Gentile D, Pirondi A (2004) Identification of the parameters of a non-linear continuum damage mechanics model for ductile failure in metals. J Strain Anal 39(6):639–651

    Article  Google Scholar 

  49. Bonora N, Gentile D, Pirondi A, Newaz G (2005) Ductile damage evolution under triaxial state of stress: theory and experiments. Int J Plast 21(5):981–1007

    Article  MATH  Google Scholar 

  50. Bonora N (1997) A nonlinear CDM model for ductile failure. Eng Fract Mech 58(1/2):11–28

    Article  MathSciNet  Google Scholar 

  51. Bonora N (1999) Identification and measurement of ductile damage parameters. J Strain Anal Eng Des 34(6):463–478

    Article  Google Scholar 

  52. Bordet S, Karstensen A, Knowles D, Wiesner C (2005) A new statistical local criterion for cleavage fracture in steel. Part I: model presentation. Eng Fract Mech 72:435–452

    Article  Google Scholar 

  53. de Borst R (1991) Simulation of strain localization: a reappraisal of the cosserat continuum. Eng Comp 8:317–332

    Article  Google Scholar 

  54. de Borst R, Mühlhaus HB (1992) Gradient-dependent plasticity: formulation and algorithmic aspects. Int J Numer Meth Eng 35:521–539

    Article  MATH  Google Scholar 

  55. de Borst R, Sluys L, Mühlhaus HB, Pamin J (1993) Fundamental issues in finite element analyses of localization of deformation. Eng Comput 10(2):99–121

    Article  Google Scholar 

  56. Brocks W, Cornec A, Scheider I (2003) Computational aspects of nonlinear fracture mechanics. Compr Struct Integrity 3:127–209

    Article  Google Scholar 

  57. Bron F (2004) Ductile rupture in thin sheets of two grades of 2024 aluminum alloy. Mater Sci Eng, A 380(1-2):356–364

    Article  Google Scholar 

  58. Bron F, Besson J (2006) Simulation of the ductile tearing for two grades of 2024 aluminum alloy thin sheets. Eng Fract Mech 73(11):1531–1552

    Article  Google Scholar 

  59. Brooksbank D, Andrews KW (1968) Thermal expansion of some inclusions found in steels and relation to tessellated stresses. J Iron Steel Inst 206:595–599

    Google Scholar 

  60. Broek D (1972) The role of inclusions in ductile fracture and fracture toughness, symposium on fracture and fatigue on the school of engineering and applied science. George Washington University, Washington, pp 55–65

    Google Scholar 

  61. Brown LM, Embury JD (1973) The initiation and growth of voids at second phase particles. In: Proceedings of the third international conference on the strength of metals and alloys 1

    Google Scholar 

  62. Brocks W, Klingbeil D, Künecke G, Sun D-Z (1995) Application of the gurson model to ductile tearing resistance. Constraint Eff Fract Theory Appl 2:232–252

    Article  Google Scholar 

  63. Brunet JC, Bellot J (1973) Deformation of MnS inclusions in steel. J Iron Steel Inst 211:511–512

    Google Scholar 

  64. Budiansky B, Hutchinson J, Slutsky S (1982) Void growth and collapse in viscous solids. Mechanics of solids—the rodney hill 60th anniversary volume

    Google Scholar 

  65. Burghard H (1974) The influence of precipitate morphology on microvoid growth and coalescence in tensile fractures. Metall Trans 5:2083–2094

    Article  Google Scholar 

  66. Butcher C, Chen Z, Worswick M (2006) A lower bound damage-based finite element simulation of stretch flange forming of Al–Mg alloys. Int J Fract 142(3-4):289–298

    Article  Google Scholar 

  67. Büttner M, Seidenfuß M, Krätschmer D, Roos E (2011) Experimentelle und schädigungsmechanische Analyse der Rissentwicklung in Mischnähten. 37. MPA-Seminar, Universität Stuttgart, pp 39.1–39.21

    Google Scholar 

  68. Calhoun C (1970) The effects of particles on fracture processes in Magnesium alloys. Metall Trans 1:997–1006

    Google Scholar 

  69. Chaboche JL, Boudifa M, Saanouni K (2006) A CDM approach of ductile damage with plastic compressibility. Int J Fract 137(1-4):51–75

    Article  MATH  Google Scholar 

  70. Chao H (1964) Deformation and fracture of MnS crystals. Trans ASME 386–398

    Google Scholar 

  71. Chaouadi R, de Meester P, Scibetta M (1996) Micromechanical modeling of ductile fracture initiation to predict fracture toughness of reactor pressure vessel steels. Le J de Physique IV 06(C6):53–64

    Google Scholar 

  72. Chu C (1980) Void nucleation effects in biaxially stretched sheets. J Eng Mater Technol 102:249–256

    Article  Google Scholar 

  73. Cockcroft M, Latham D (1968) Ductility and the workability of metals. J Inst Met 96:33–39

    Google Scholar 

  74. Cottrell, A. (1959) Theoretical aspects of fracture. Department of Metallurgy, University of Cambridge: 20–53

    Google Scholar 

  75. Cox TB (1974) An investigation of the plastic fracture of AISI 4340 and 18 nickel–200 grade maraging steels. Metall Trans 5:1457–1470

    Article  Google Scholar 

  76. Curran D (1987) Dynamic failure of solids. Physic Rep 147(5 & 6):253–388

    Article  Google Scholar 

  77. Decamp K, Bauvineau L, Besson J, Pineau A (1997) Size and geometry effects on ductile rupture of notched bars in a C-Mn steel: experiments and modeling. Int J Fract 88:1–18

    Article  Google Scholar 

  78. Deimel P, Sattler E (1998) Non-metallic inclusions and their relation to the J-Integral, Ji, phys, at physical crack initiation for different steels and weld metals. J Mater Sci 33:1723–1736

    Article  Google Scholar 

  79. Eckstein J, Roos E, Roll K, Ruther M, Seidenfuß M (2007) Experimental and numerical investigations to extend the process limits in self-pierce riveting. In: 10th ESAFORM conference on material forming, pp 279–286

    Google Scholar 

  80. Eckstein J (2009) Numerische und experimentelle Erweiterung der Verfahrensgrenzen beim Halbhohlstanznieten hochfester Bleche. Dissertation, Institut für Materialprüfung, Werkstoffkunde und Festigkeitslehre, Universität Stuttgart

    Google Scholar 

  81. Eisele U, Seidenfuss M, Pitard-Bouet JM (1996) Comparison between fracture mechanics and local approach models for the analysis of shallow cracks. J de Physique IV:C6-75–C6-89

    Google Scholar 

  82. Enakoutsa K, Leblond J, Perrin G (2007) Numerical implementation and assessment of a phenomenological nonlocal model of ductile rupture. Comput Methods Appl Mech Eng 196(13–16):1946–1957

    Article  MATH  Google Scholar 

  83. Engel L (1982) Rasterelektronenmikroskopische Untersuchungen von Metallschäden. 2. neubearbeitete Auflage, Carl Hanser Verlag München. ISBN 3-446-13416-6

    Google Scholar 

  84. Engelen RAB, Geers MGD, Baaijens FPT (2003) Nonlocal implicit gradientenhanced elasto-plasticity for the modelling of softening behaviour. Int J Plast 19(4):403–433

    Article  MATH  Google Scholar 

  85. Engelen R, Fleck N, Peerlings R, Geers M (2006) An evaluation of higher-order plasticity theories for predicting size effects and localisation. Int J Solids Struct 43(7–8):1857–1877

    Article  MATH  Google Scholar 

  86. Eripret C, Rousselier G (1994) First spinning cylinder test analysis using a local approach to fracture. Nucl Eng Des 152:11–18

    Article  Google Scholar 

  87. Ervasti E, Stahlberg U (2005) Void initiation close to a macro-inclusion during single pass reductions in the hot rolling of steel slabs: a numerical study. J Mater Process Technol 170(1-2):142–150

    Article  Google Scholar 

  88. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Math Phys Sci 241(1226):376–396

    Article  MathSciNet  MATH  Google Scholar 

  89. Faleskog J, Gao X, Shih C (1998) Cell model for nonlinear fracture analysis—I. Micromech calibration. Int J Fract 89:355–373

    Article  Google Scholar 

  90. Fesich T, Mohan P, Marzougui D, Kan CD (2008) A study of the gurson damage model and numerical simulation of ductile failure in LS-DYNA. 7. LS-DYNA Anwenderforum, Bamberg 2008, Crash III. Versagen, Barrieren

    Google Scholar 

  91. Feucht M, Sun DZ, Erhart T, Frank T (2006) Recent development and applications of the Gurson model. 5. LS-DYNA Anwenderforum, Ulm 2006, Material II—Metalle, pp D-II-21–D-II-32

    Google Scholar 

  92. Feucht M (1998) Ein gradientenabhängiges Gursonmodell zur Beschreibung duktiler Schädigung mit Entfestigung. Dissertation, TU Darmstadt

    Google Scholar 

  93. Fisher JR, Gurland J (1981) Void nucleation in spheroidized carbon steels—part 1: experimental. Metal Sci 15(5):185–192

    Article  Google Scholar 

  94. Fisher JR, Gurland J (1981) Void nucleation in spheroidized carbon steels—part 2: model. Metal Sci 15(5):193–202

    Article  Google Scholar 

  95. Forest S, Sievert R (2006) Nonlinear microstrain theories. Int J Solids Struct 43(24):7224–7245

    Article  MathSciNet  MATH  Google Scholar 

  96. French I, Weinrich P (1975) The influence of hydrostatic pressure on the tensile deformation and fracture of copper. Metall Trans A 6A:785–790

    Article  Google Scholar 

  97. French I, Weinrich P (1976) The shear mode of ductile fracture in materials with few inclusions. Metall Trans A 7A:1841–1845

    Article  Google Scholar 

  98. Freund L, Lee Y (1990) Observations on high strain rate crack growth based on a strip yield model. Non-linear fracture. Springer, Berlin, pp 261–276

    Google Scholar 

  99. Gao X, Shih C, Tvergaard V, Needleman A (1996) Constraint effects on the ductile-brittle transition in small scale yielding. J Mech Phys Solids 44(8):1255–1282

    Article  Google Scholar 

  100. Gao X, Ruggieri C, Dodds RH Jr (1998) Calibration of weibull stress parameters using fracture toughness data. Int J Fract 92:175–200

    Article  Google Scholar 

  101. Gao X, Dodds R Jr, Tregoning R, Joyce A, Link R (1999) A Weibull stress model to predict cleavage fracture in plates containing surface cracks. Fatigue Fract Eng Mater Struct 22:481–493

    Article  Google Scholar 

  102. Gao X, Dodds RH Jr, Tregoning RL, Joyce JA, Link RE (1999) A weibull stress model to predict cleavage fracture in plates containing surface cracks. Fatigue Fract Eng Mater Struct 22:481–493

    Article  Google Scholar 

  103. Gao X, Zhang G, Srivatsan T (2005) Prediction of cleavage fracture in ferritic steels: a modified Weibull stress model. Mater Sci Eng, A 394:210–219

    Article  Google Scholar 

  104. Gao X, Zhang G, Srivatsan T (2006) A probabilistic model for prediction of cleavage fracture in the ductile-to-brittle transition region and the effect of temperature on model parameters. Mater Sci Eng A 415:264–272

    Article  Google Scholar 

  105. Gao X, Kim J (2006) Modeling of ductile fracture: significance of void coalescence. Int J Solids Struct 43:6277–6293

    Article  MATH  Google Scholar 

  106. Gao X, Zhang G, Roe C (2010) A study on the effect of the stress state on ductile fracture. Int J Damage Mech 19(1):75–94

    Article  Google Scholar 

  107. Gao X, Faleskog J, Shih C, Dodds R Jr (1998) Ductile tearing in part-through cracks: experiments and cell-model predictions. Eng Fract Mech 59(6):761–777

    Article  Google Scholar 

  108. Gardner R, Pollock T, Wilsdorf H (1977) Crack initiation at dislocation cell boundaries in the ductile fracture of metals. Mater Sci Eng 169–174

    Google Scholar 

  109. Geers M (1997) Experimental analysis and computational modelling of damage and fracture. PhD thesis, Eindhoven University of Technology

    Google Scholar 

  110. Gologanu M, Leblond J, Devaux J (1994) Approximate models for ductile metals containing nonspherical voids—case of axisymmetric oblate ellipsoidal cavities. J Eng Mater Technol 116:290–297

    Article  Google Scholar 

  111. Goods SH, Brown LM (1979) The nucleation of cavities by plastic deformation. Acta Metall 27:1–15

    Article  Google Scholar 

  112. Gross D, Seelig T (2007) Bruchmechanik: Mit einer Einführung in die Mikromechanik. 4. bearb. Auflage, Berlin [u.a.]: Springer, Berlin. ISBN 3-540-37113-3

    Google Scholar 

  113. Gurland J (1963) The mechanism of dutile rupture of metals containing inclusions. Trans ASME 56:443–454

    Google Scholar 

  114. Gurland J (1972) Oberservation on the fracture of cementile particles in spheroidized 1,05 % C steel deformed at room temperature. Acta Metall 20(5):735–741

    Article  Google Scholar 

  115. Gurson AL (1975) Plastic flow and fracture behaviour of ductile materials: incorporating void nucleation, growth, and interaction. Thesis, Brown University, Rhode Island

    Google Scholar 

  116. Gurson A (1977) Continuum theory of ductile rupture by void nucleation and growth: part I yield criteria and flow rules for porous ductile media. J Eng Mat Technol 99(1):2−15

    Google Scholar 

  117. Hancock JW (1976) On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress states. J Mech Phys Solids 24:147–169

    Google Scholar 

  118. Helms R (1977) Theoretische und Experimentelle Untersuchungen zum Mechanismus des duktilen Bruches metallischer Werkstoffe. Archiv für das Eisenhüttenwesen 48, Nr. 5:297–302

    Google Scholar 

  119. Henry G, Horstmann D (1979) De ferri metallographia V : Fraktographie und Mikrofraktographie. Düsseldorf, London: Verlag Stahleisen, Heyden. ISBN 3-514-00215-0

    Google Scholar 

  120. Hentrich M, Veit P, Stroppe H (1981) Der duktile Bruch von Materialien mit Einschlüssen. Wissenschaftliche Zeitschrift der Technischen Hochschule Otto von Guerike Magdeburg, Heft 2

    Google Scholar 

  121. Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13:213–222

    Article  Google Scholar 

  122. Hor A, Lebrun J-L, Morel F (2009) Experimental study and local approach modelling of ductile damage in steels over a wide temperature range. In: 7th EUROMECH solid mechanics conference

    Google Scholar 

  123. Hosseini SB, Temmel C, Karlsson B, Ingesten N-G (2007) An in-situ scanning electron microscopy study of the bonding between mns inclusions and the matrix during tensile deformation of hot-rolled steels. Metall Mater Trans A 38A:982–989

    Article  Google Scholar 

  124. Huang Y (1991) Accurate dilatation rates for spherical voids in triaxial fields. J Appl Mech 58:1084–1086

    Article  Google Scholar 

  125. Huber G, Brechet Y, Pardoen T (2005) Predictive model for void nucleation and void growth controlled ductility in quasi-eutectic cast aluminium alloys. Acta Mater 53:2739–2749

    Article  Google Scholar 

  126. Hütter G, Linse T, Mühlich U, Kuna M (2013) Simulation of ductile crack initiation and propagation by means of a non-local gurson-model. Int J Solids Struct 50(5):662–671

    Article  Google Scholar 

  127. Hütter G, Linse T, Roth S, Mühlich U, Kuna M (2013) A modeling approach for the complete ductile-brittle transition region: cohesive zone in combination with a non-local gurson-model. Int J Fract 185(1-2):1–25

    Google Scholar 

  128. Ishikawa N, Parks D, Kurihara M (2000) Micromechanism of ductile crack initiation in structural steels based on void nucleation and growth. ISIJ Int 40(5):519–527

    Article  Google Scholar 

  129. Jackiewicz J, Kuna M (2003) Non-local regularization for fe simulation of damage in ductile materials. Comput Mater Sci 28(3-4):684–695

    Article  Google Scholar 

  130. Jirásek M (1998) Nonlocal models for damage and fracture: comparison of approaches. Int J Solids Struct 35(31-32):4133–4145

    Article  MATH  Google Scholar 

  131. Jirásek M, Rolshoven S (2009) Localization properties of strain-softening gradient plasticity models. part I: strain-gradient theories. Int J Solids Struct 46:2225–2238

    Article  MATH  Google Scholar 

  132. Johnson, G., W. Cook (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of 7th international symposium on ballistics, pp 541–547

    Google Scholar 

  133. Johnson G, Cook W (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21(1):31–48

    Article  Google Scholar 

  134. Kachanov LM (1999) Rupture time under creep conditions (1958). Int J Fract 97:11–18

    Article  Google Scholar 

  135. Kanvinde AM (2006) Void growth model and stress modified critical strain model to predict ductile fracture in structural steels. Struct Eng 1907–1918

    Google Scholar 

  136. Kim J, Gao X, Srivatsan T (2004) Modeling of void growth in ductile solids: effects of stress triaxiality and initial porosity. Eng Fract Mech 71:379–400

    Article  Google Scholar 

  137. Koplik J, Needleman A (1988) Void growth and coalescence in porous plastic solids. Int J Solids Struct 24(8):835–853

    Article  Google Scholar 

  138. Kröner E (1961) Zur plastischen Verformung des Vielkristalls. Acta Metall 9:155–161

    Article  Google Scholar 

  139. Kroon, M., Faleskog J. (2002) A probabilistic model for cleavage fracture with a length scale-influence of material parameters and constraint. Int J Fract 99–118

    Google Scholar 

  140. Kroon M, Faleskog J (2005) Micromechanics of cleavage fracture initiation in ferritic steels by carbide cracking. J Mech Phys Solids 53(1):171–196

    Article  MATH  Google Scholar 

  141. Kuna M, Sun D (1996) Three-dimensional cell model analyses of void growth in ductile materials. Int J Fract 81:235–258

    Article  Google Scholar 

  142. Kussmaul K, Eisele U, Seidenfuss M (1993) On the Applicability of local approaches for the determination of the failure behavior of ductile steels. J Pressure Vessel Technol 115:214–220

    Article  Google Scholar 

  143. Kussmaul K, Seidenfuss M (1993) On the transferability of micro-mechanical damage models to specimens of different size and geometry. In: The 6th German-Japanese joint seminar on structural strength and NDE Problems in nuclear engineering

    Google Scholar 

  144. Kussmaul K, Seidenfuss M, Eisele U (1993) On the applicability of damage models for the description of the failure behaviour of ductile steels. In: 8th international confernce on fracture

    Google Scholar 

  145. Kussmaul K, Eisele U, Seidenfuss M (1995) On the applicability of local approach models for the determination of the failure behaviour of steels of different toughness. Fatigue Fract Mech Press Vessel Pip ASME PVP 304:17–25

    Google Scholar 

  146. Kußmaul K, Seidenfuß M, Elsäßer K, Mayer U, Zies G (1995) Reaktorsicherheitsforschung - Vorhaben-Nr. 1500 913: Experimentelle und numerische Untersuchungen zur Beschreibung des Versagensverhaltens von Stählen unterschiedlicher Zähigkeit mit Hilfe von Schädigungsmodellen. MPA Universität Stuttgart

    Google Scholar 

  147. Lange G (1983) Mikroskopische und makroskopische Erscheinungsformen des duktilen Gewaltbruches (Gleitbruch), Systematische Beurteilung techn. Schadensfälle, DGM, pp 79–87

    Google Scholar 

  148. Lautridou J (1981) Crack initiation and stable crack growth resistance in A508 steels in relation to inclusion distribution. Eng Fract Mech 15:55–71

    Article  Google Scholar 

  149. Le Roy G, Embury JD, Edwards G, Ashby M (1981) A model of ductile fracture based on the nucleation and growth of voids. Acta Metall 29:1509–1522

    Article  Google Scholar 

  150. Leblond J-B, Mottet G (2008) A theoretical approach of strain localization within thin planar bands in porous ductile materials. C R Mécanique 336(1−2):176−189

    Google Scholar 

  151. Leblond J, Perrin G, Devaux J (1994) Bifurcation effects in ductile metals with nonlocal damage. J Appl Mech 61:236

    Article  MATH  Google Scholar 

  152. Leblond J, Perrin G, Devaux J (1995) An improved Gurson-type model for hardenable ductile metals. Eur J Mech A/Solids 14:499–527

    MathSciNet  MATH  Google Scholar 

  153. Lemaître J, Desmorat R (2005) Engineering damage mechanics: ductile, creep, fatigue and brittle failures. Springer, Berlin. ISBN 3-540-21503-4

    Google Scholar 

  154. Lemaitre J, Chaboche JL (1978) Aspects phénoménologique de la rupture par endommagement. J de Mécanique appliquée 2(3):317–365

    Google Scholar 

  155. Lemaitre J (1984) How to use damage mechanics. Nucl Eng Des 80:233–245

    Article  Google Scholar 

  156. Lemaitre J (1985) Coupled elasto-plasticity and damage constitutive equations. Comput Methods Appl Mech Eng 51:31–49

    Article  MATH  Google Scholar 

  157. Lemaitre J (1985) A continuous damage mechanics model for ductile fracture. J Eng Mater Technol 107:83–89

    Article  Google Scholar 

  158. Lemaitre J (1990) Micro-mechanics of crack initiation. Int J Fract 42:87–99

    Article  Google Scholar 

  159. Lemaitre J (1996) A course on damage mechanics, 2nd revised and enlarged edition. Springer, Berlin. ISBN 3-540-60980-6

    Google Scholar 

  160. Linse T, Hütter G, Kuna M (2012) Simulation of crack propagation using a gradient-enriched ductile damagemodel based on dilatational strain. Eng Fract Mech 95:13–28

    Article  Google Scholar 

  161. Linse T, Kuna M, Viehrig HW (2014) Quantification of brittle-ductile failure behavior of ferritic reactor pressure vessel steels using the small-punch-test and micromechanical damage models. Mater Sci Eng, A 614:136–147

    Article  Google Scholar 

  162. Lode W (1926) Versuche über den Einfluß der mittleren Hauptspannung auf das Fließen der Metalle Eisen. Kupfer und Nickel. Zeitschrift für Physik 36(11–12):913–939

    Article  Google Scholar 

  163. Lorentz E, Besson J, Cano V (2008) Numerical simulation of ductile fracture with the Rousselier constitutive law. Comput Methods Appl Mech Eng 197(21–24):1965–1982

    Article  MATH  Google Scholar 

  164. Luong Dung N, Appeltauer J (1992) Repräsentative Bruchkriterien in der Kaltmassivumformung metallischer Werkstoffe. Forschung im Ingenieurwesen-Eng Res 58(3):54–60

    Article  Google Scholar 

  165. Maire E, Bouaziz O, Di Michiel M, Verdu C (2008) Initiation and growth of damage in a dual-phase steel observed by X-ray microtomography. Acta Mater 56:4954–4964

    Article  Google Scholar 

  166. Margolin H (1978) Void formation, void growth and tensile fracture in Ti-6Al-4V. Metall Trans A 9A:781–790

    Article  Google Scholar 

  167. Marini B (1985) Ductile rupture of A508 steel under non-radial loading. Eng Fract Mech 22(3):375–386

    Article  MathSciNet  Google Scholar 

  168. Marini B, Mudry F, Pineau A (1985) Experimental study of cavity growth in ductile rupture. Eng Fract Mech 22(6):989–996

    Article  Google Scholar 

  169. McClintock F (1968) A criterion for ductile fracture by the grwoth of holes. J Appl Mech 363–371

    Google Scholar 

  170. Mediavilla J, Peerlings R, Geers M (2004) Application of a gradient ductile damage model to metal forming processes including crack propagation and mesh adaptivity. In: 11th international conference on sracture

    Google Scholar 

  171. Menzemer C, Srivatsan T, Al-Hajri M, Ortiz R (2000) The impact toughness and tensile properties of 8320 steel. Mater Sci Eng, A 289:198–207

    Article  Google Scholar 

  172. Molnar D (2011) Private communications. IMWF Universität Stuttgart

    Google Scholar 

  173. Morgeneyer T, Proudhon H, Besson J (2010) Study of the flat to slant crack transition in ductile thin sheet material: Simulations and experiments. In: Proceedings of the 18th European conference on fracture

    Google Scholar 

  174. Mudry F (1987) A local approach to cleavage fracture. Nucl Eng Des 105(1):65–76

    Article  Google Scholar 

  175. Münstermann S, Langenberg P, Seidenfuss M (2005) Numerische Bestimmung von duktilen Rissinitiierungskennwerten unter Berücksichtigung der Mikrostruktur. DVM-Bericht 237 “Technische Sicherheit, Zuverlässigkeit und Lebensdauer”:85–99

    Google Scholar 

  176. Münstermann, S. (2006) Numerische Beschreibung des duktilen Versagensverhalten von hochfesten Baustählen unter Berücksichtigung der Mikrostruktur. Dissertation, IEHK, RWTH-Aachen

    Google Scholar 

  177. Nahshon K, Hutchinson J (2008) Modification of the Gurson model for shear failure. Eur J Mech A Solids 27:1–17

    Article  MATH  Google Scholar 

  178. Needleman A (1987) Continuum model for void nucleation by inclusion debonding. J Appl Mech 54(3):525–531

    Article  MATH  Google Scholar 

  179. Needleman A, Tvergaard V (1995) Analysis of a brittle-ductile transition under dynamic shear loading. Int J Solids Struct 32(17):2571–2590

    Article  MATH  Google Scholar 

  180. Nikitin L (1996) Softening solids: reality or misinterpretation? Technische Mechanik 16(1):86–96

    Google Scholar 

  181. Nonn A (2009) Experimentelle und numerische Analyse des Schädigungsverhaltens von Hybridlaserschweißverbindungen. Dissertation, Rheinisch-Westfälische Technische Hochschule Aachen

    Google Scholar 

  182. Nonn A, Kalwa C (2010) Modelling of damage behaviour of high strength pipeline steel. In: 18th European conference on fracture

    Google Scholar 

  183. Ockewitz A, Sun D-Z, Klamser H, Malcher D (2006) Damage modelling of automobile components of aluminium materials under crash loading. 5. LS-DYNA Anwenderforum, Ulm 2006, pp 1–12

    Google Scholar 

  184. Ortiz M, Leroy Y, Needleman A (1987) A finite element method for localized failure analysis. Comput Methods Appl Mech Eng 61(2):189–214

    Article  MATH  Google Scholar 

  185. Oyane M (1972) Criteria of ductile fracture strain. Jpn Soc Mech Eng 15(90):1507–1513

    Article  Google Scholar 

  186. Pan J, Saje M, Needleman A (1983) Localization of deformation in rate sensitive porous plastic solids. Int J Fract 21:261–278

    Article  Google Scholar 

  187. Pardoen T, Hutchinson J (2000) An extended model for void growth and coalescence. J Mech Phys Solids 48:2467–2512

    Article  MATH  Google Scholar 

  188. Pardoen T, Hutchinson J (2003) Micromechanics-based model for trends in toughness of ductile metals. Acta Mater 51:133–148

    Article  Google Scholar 

  189. Pardoen T (2006) Numerical simulation of low stress triaxiality ductile fracture. Comput Struct 84:1641–1650

    Article  Google Scholar 

  190. Pardoen T (1998) Experimental and numerical comparison of void growth models and void coalescence criteria for the prediction of ductile fracture in copper bars. Acta Mater 46(2):541–552

    Article  Google Scholar 

  191. Pavankumar T, Samal M, Chattopadhyay J, Dutta B, Kushwaha H, Roos E, Seidenfuss M (2005) Transferability of fracture parameters from specimens to component level. Int J Press Vessels Pip 82:386–399

    Article  Google Scholar 

  192. Peerlings R, de Borst R, Brekelmans W, de Vree J (1996) Gradient enhanced damage for quasi-brittle materials. Int J Numer Meth Eng 39(19):3391–3403

    Article  MATH  Google Scholar 

  193. Peerlings R, Geers M, de Borst R, Brekelmans W (2001) A critical comparison of nonlocal and gradient-enhanced softening continua. Int J Solids Struct 38(44–45):7723–7746

    Article  MATH  Google Scholar 

  194. Perrin G, Leblond J (1990) Analytical study of a hollow sphere made of plastic porous material and subjected to hydrostatic tension-application to some problems in ductile fracture of metals. Int J Plast 6:677–699

    Article  Google Scholar 

  195. Pettermann H (2000) Numerical simulations of a compositionally graded structure using a hierarchical approach. Mat Sci Eng, A276 276:277−282

    Google Scholar 

  196. Pijaudier-Cabot G, Bazant ZP (1987) Nonlocal damage theory. J Eng Mech 113(10):1512–1533

    Article  Google Scholar 

  197. Pijaudier-Cabot G, Baant ZP, Tabbara M (1988) Comparison of variousmodels for strain-softening. Eng Comput 5(2):141–150

    Article  Google Scholar 

  198. Pijaudier-Cabot G, Benallal A (1993) Strain localization and bifurcation in a nonlocal continuum. Int J Solids Struct 30(13):1761–1775

    Article  MATH  Google Scholar 

  199. Pineau A., Joly P (1991) Local versus global approaches to elastic-plastic fracture mechanics. Application to ferritic steels and a cast duplex stainless steel, components—fundamentals and applications. In: ESIS/EGF9, pp 381–414

    Google Scholar 

  200. Pineau A (1997) Modelling of scatter and size effects in ductile and brittle fracture. In: Transactions of the 14th international conference on SMiRT

    Google Scholar 

  201. Pineau A (2006) Development of the local approach to fracture over the past 25 years: theory and applications. Int J Fract 138(1):139–166

    Article  MATH  Google Scholar 

  202. Pospiech J (1995) Ductile fracture of carbon steels: a review. J Mater Eng Perform 4(1):82–89

    Article  Google Scholar 

  203. Potirniche G, Horstemeyer M, Wagner G, Gullett P (2006) A molecular dynamics study of void growth and coalescence in single crystal nickel. Int J Plast 22:257–278

    Article  MATH  Google Scholar 

  204. Poussard C, Sainte–Catherine C, Galon P, Forget P (2002) Finite element simulations of sub-size charpy tests and associated transferability to toughness results. In: Francois D, Pineau A (eds) Charpy to present impact testing. Elsevier science, London, pp 469–478

    Google Scholar 

  205. Poussard C, Seidenfuss M (1997) On the simulation of ductile crack growth using the Rousselier model. In: Transactions of the 14th international conference on structural mechanics in reactor technology, pp 673–680

    Google Scholar 

  206. Prahl U, Papaefthymiou S, Uthaisangsuk V, Bleck W, Sietsma J, van der Zwaag S (2007) Micromechanics-based modelling of properties and failure of multiphase steels. Comput Mater Sci 39:17–22

    Article  Google Scholar 

  207. Puttik K (1959) Ductile fracture in metals. Phil Mag 4:964–969

    Article  Google Scholar 

  208. Rabotnov Y (1968) Creep rupture. Applied mechanics. In: Proceedings of the twelfth international congress of applied mechanics, pp 342–349

    Google Scholar 

  209. Reusch F (2003) Entwicklung und Anwendung eines nicht-lokalen Materialmodells zur Simulation duktiler Schädigung in metallischen Werkstoffen. Dissertation, Universität Dortmund. ISBN 249591204

    Google Scholar 

  210. Reusch F, Svendsen B, Klingbeil D (2003) A non-local extension of Gursonbased ductile damagemodeling. Comput Mater Sci 26:219–229

    Article  Google Scholar 

  211. Rice J, Tracey D (1969) On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids 17:201–217

    Article  Google Scholar 

  212. Rivalin F, Pineau A, Di Fant M, Besson J (2001) Ductile tearing of pipeline-steel wide plates: I. Dynamic and quasi-static experiments. Eng Fract Mech 68:329–345

    Article  Google Scholar 

  213. Roberts W, Lehtinen B, Easterling KE (1976) An in situ SEM study of void development around inclusions in steel during plastic deformation. Acta Metall 24:745–758

    Article  Google Scholar 

  214. Roos E, Seebich HP, Seidenfuss M, Schmauder S, Kizler P (2005) Effect of variation of microstructure on fracture mechanics parameters. In: 3rd Indo-German seminar on “advances in structural integrity & safety”, Paper J03: S. mechanics

    Google Scholar 

  215. Roos E, Eisele U, Lammert R, Restemeyer D, Schuler X, Seebich H-P, Seidenfuß M, Silcher H, Stumpfrock L (2006) Reaktorsicherheitsforschung – Vorhaben-Nr. 1501 240: Kritische Überprüfung des Masterkurve-Ansatzes im Hinblick auf die Anwendung bei deutschen Kernkraftwerken. MPA Universität Stuttgart

    Google Scholar 

  216. Roos E, Seidenfuss M, Krämer D, Krolop S, Eisele U, Hindenlang U (1991) Application and evaluation of different numerical methods for determining crack resistance curves. Nucl Eng Des 130:297–308

    Article  Google Scholar 

  217. Rösch L (1969) Relationship between precipitation and dimple fracture in an 18 percent nickel maraging steel. Electron microfractography, In: ASTM STP453, pp 3–32

    Google Scholar 

  218. Rosenfield A (1972) Fracture of steels containing pearlite. Metall Trans 3:2797–2804

    Article  Google Scholar 

  219. Roth S, Kuna M. (2011) Numerical study on interfacial damage of sprayed coatings due to thermo-mechanical fatigue. In: Proceedings of the XI international conference on computational plasticity

    Google Scholar 

  220. Rousselier G (2001) Dissipation in porous metal plasticity and ductile fracture. J Mech Phys Solids 49:1727–1746

    Article  MATH  Google Scholar 

  221. Rousselier G, Pastor J, Bilger N, Leclercq S (2004) Recent results on ductile fracture modeling at the macro and microscales. In: 11th international conference on fracture

    Google Scholar 

  222. Rousselier G, Leclercq S (2006) A simplified “polycrystalline” model for viscoplastic and damage finite element analyses. Int J Plast 22:685–712

    Article  MATH  Google Scholar 

  223. Rousselier G (1981) Finite deformation constitutive relations including ductile fracture damage. Three-dimensional constitutive relations and ductile fracture. North-Holland Publishing Company, Holland, pp 331–355

    Google Scholar 

  224. Rousselier G (1987) Ductile fracture models and their potential in local approach of fracture. Nucl Eng Des 105:97–111

    Article  Google Scholar 

  225. Rudd RE, Belak JF (2002) Void nucleation and associated plasticity in dynamic fracture of polycrystalline copper: an atomistic simulation. Comput Mater Sci 24:148–153

    Article  Google Scholar 

  226. Rudnicki, J. W., Rice J.R. (1975) Conditions for the localization of deformation in pressure-sensitive dilatant materials. J Mech Phys Solids 23(6):371–394

    Google Scholar 

  227. Ruggieri C, Dodds R Jr (1996) A transferability model for brittle fracture including constraint and ductile tearing effects: a probabilistic approach. Int J Fract 79:309–340

    Article  Google Scholar 

  228. Sabirov I, Kolednik O (2005) The effect of inclusion size on the local conditions for void nucleation near a crack tip in a mild steel. Scripta Mater 53:1373–1378

    Article  Google Scholar 

  229. Sainte–Catherine C, Poussard C, Vodinh J, Schill R, Hourdequin N, Galon P, Forget P (2002) Finite element simulations and empirical correlation for Charpy-V and subsize Charpy tests on an unirradiated low-alloy RPV ferritic steel. small specimen test techniques 4. In: ASTM STP 1418, pp 107–136

    Google Scholar 

  230. Samal, MK (2007) Nonlocal damage models for structural integrity analysis. Dissertation, Universität Stuttgart

    Google Scholar 

  231. Samal M, Seidenfuss M, Roos E, Dutta B, Kushwaha H (2008) Finite element formulation of a new nonlocal damagemodel. Finite Elem Anal Des 44(6–7):358–371

    Article  Google Scholar 

  232. Samal M, Seidenfuss M, Roos E, Dutta B, Kushwaha H (2008) A mesh-independent Gurson–Tvergaard–Needleman damage model and its application in simulating ductile fracture behavior. Proc IMechE. Part C: J Mech Eng Sci 223:283–292

    Google Scholar 

  233. Schiffmann R (2001) Experimentelle Bestimmung und modellmässige Beschreibung der Schädigung beim Gleitbruch von Stählen. Dissertation, IEHK, RWTH-Aachen

    Google Scholar 

  234. Scheyvaerts F, Pardoen T, Onck P (2010) A new model for void coalescence by internal necking. Int J Damage Mech 19:95–126

    Article  Google Scholar 

  235. Scheyvaerts F, Onck P, Tekoglu C, Pardoen T (2011) The growth and coalescence of llipsoidal voids in plane strain under combined shear and tension. J Mech Phys Solids 59:373–397

    Article  MATH  Google Scholar 

  236. Scheil E, Schnell R (1952) Die Verformbarkeit von Schlackeneinschlüssen im Stahl und ihre Bedeutung für die Beurteilung von Schmiedestücken. Stahl und Eisen

    Google Scholar 

  237. Schlüter N (1997) Einfluss der Beanspruchung und des Gefüges auf die lokale Schädigung beim Gleitbruch von Baustählen. Dissertation, IEHK, RWTH Aachen

    Google Scholar 

  238. Schmitt W, Keim E, Sun D-Z, Blauel J, Nagel G (1999) Load-carrying capacity and crack resistance of a cladding by the Sigma-oscillating wire technique. Nucl Eng Des 190:149–158

    Article  Google Scholar 

  239. Seebich H-P (2007) Mikromechanisch basierte Schädigungsmodelle zur Beschreibung des Versagensablaufs ferritischer Bauteile. dissertation, Universität Stuttgart

    Google Scholar 

  240. Seidenfuß M (1992) Untersuchungen zur Beschreibung des Versagensverhaltens mit Hilfe von Schädigungsmodellen am Beispiel des Werkstoffes 20 MnMoNi 5 5. Dissertation, Fakultät Energietechnik, Universität Stuttgart

    Google Scholar 

  241. Seidenfuß M, Steglich D, Heerens J (1998) Beschreibung des Verhaltens von Al3Ti-partikelverstärktem Aluminium durch zwei verschiedene Schädigungsmodelle. DVM-Bericht 230:59–72

    Google Scholar 

  242. Seidenfuß M, Elsäßer K (1999) MPA/VGB Forschungsvorhaben 5.4.1: Analytische Ermittlung des Bruchverhaltens austenitischer Rohrleitungen - Local Approach -- Teilschritt 2 : Teilbericht 5.4.1-2: Bestimmung der Schädigungsparameter für den austenitischen Rohrleitungswerkstoff 1.4541. MPA Universität Stuttgart

    Google Scholar 

  243. Seidenfuß M, Turan K, Didra H-P, Kuna M (1999) MPA/VGB Forschungsvorhaben 5.4.1: Analytische Ermittlung des Bruchverhaltens austenitischer Rohrleitungen - Local Approach -- Teilschritt 1 : Teilbericht 5.4.1-1: Nachrechnung Schlitzversuch, Nachrechnung Oberflächenkerbe. MPA Universität Stuttgart

    Google Scholar 

  244. Seidenfuß M (2014) Schädigungsmechanische Modelle zur Beschreibung des Versagensablaufs in metallischen Bauteilen. Habilitationsschrift, Techn.-wiss. Ber., MPA Universität Stuttgart

    Google Scholar 

  245. Seppälä E, Belak J, Rudd R (2004) Onset of void coalescence during dynamic fracture of ductile metals. Phys Rev Lett 93:24

    Google Scholar 

  246. Shi Y (1989) Critical void growth for ductile rupture of steel welds. Eng Fract Mech 34(4):901–907

    Article  Google Scholar 

  247. Shi Y, Barnby J, Nadkarni A (1991) Void Growth at ductile crack initiation of a structural steel. Eng Fract Mech 39(1):37–44

    Article  Google Scholar 

  248. Shterenlikht A, Howard I (2006) The cafe model of fracture—application to a tmcr steel. Fatigue Fract Eng Mater Struct 29(9–10):770–787

    Article  Google Scholar 

  249. Simatos A (2010) Methode XFEM pour la modelisation de grandes propagations de fissure en dechirure ductile: transition d’un milieu continu vers une fissure via un modele de zone cohesive pour le modele de Rousselier. Dissertation, Mecanique, Energétique, Génie Civil, Acoustique, L’Institut National des Sciences Appliquées de Lyon

    Google Scholar 

  250. Soppa E, Schmauder S, Fischer G (2004) Particle cracking and debonding criteria in Al/Al2O3 composites. In: Proceedings of the sixth international conference for mesomechanics, pp 312–317

    Google Scholar 

  251. Soppa E, Fischer G, Seidenfuß M, Lammert R, Wackenhut G, Diem H (2008) Deformation and damage in Al based composites, FE simulations and experiments. Aluminium Alloys—Their Phys Prop 2:1225–1231

    Google Scholar 

  252. Soppa E, Nellesen J, Romanova V, Fischer G, Crostack H-A, Beckmann F (2010) Impact of 3D-model thickness on FE-simulations of microstructure. Mater Sci Eng, A 527(3):802–811

    Article  Google Scholar 

  253. Springmann M, Kuna M (2003) Identification of material parameters of the Rousselier model by non-linear optimization. Comput Mater Sci 26:202–209

    Article  Google Scholar 

  254. Springmann M (2005) Identifikation von Materialparametern schädigungsmechanischer Gesetze unter Einbeziehung der Dehnungslokalisierung. Dissertation, Technische Universität Bergakademie Freiberg

    Google Scholar 

  255. Springmann M, Kuna M (2005) Identification of material parameters of the Gurson-Tvergaard-Needleman model by combined experimental and numerical techniques. Comput Mater Sci 33:501–509

    Article  Google Scholar 

  256. Steglich D, Pirondi A, Bonora N, Brocks W (2005) Micromechanical modelling of cyclic plasticity incorporating damage. Int J Solids Struct 42:337–351

    Article  MATH  Google Scholar 

  257. Steglich D, Wafai H, Besson J (2010) Interaction between anisotropic plastic deformation and damage evolution in Al 2198 sheet metal. Eng Fract Mech 77(17):3501−3518

    Google Scholar 

  258. Steglich D (1999) Bestimmung von mikrostrukturellen Parametern in Schädigungsmodellen für duktile Metalle. Dissertation, Technische Universität Berlin

    Google Scholar 

  259. Steinmann P (1999) Formulation and computation of geometrically non-linear gradient damage. Int J Numer Meth Eng 46(5):757–779

    Article  MathSciNet  MATH  Google Scholar 

  260. Steinmann P, Larsson R, Runesson K (1997) On the localization properties of multiplicative hyperelasto-plastic continua with strong discontinuities. Int J Solids Struct 34(8):969–990

    Article  MATH  Google Scholar 

  261. Stroppe H (1981) Ermittlung der Bruchzähigkeit duktiler Werkstoffe aus Parametern der Mikrostruktur und der Fließkurve. Neue Hütte, Heft 12:446–448

    Google Scholar 

  262. Sun D-Z, Siegele D, Voss B, Schmitt W (1989) Application of local damage models to the numerical analysis of ductile rupture. Fatigue Fract Eng Mater Struct 12(3):201–212

    Article  Google Scholar 

  263. Sun D-Z, Hönig A, Böhme W, Schmitt W (1995) Application of micromechanical models to the analysis of ductile fracture under dynamic loading. Fracture mechanics. In: ASTM STP 1220, vol 25, pp 343–356

    Google Scholar 

  264. Suquet P (1997) Continuum micromechanics. Springer, Wien, New York, pp 61-130. ISBN 3-211-82902-4

    Google Scholar 

  265. Tanguy B, Besson J (2002) An extension of the Rousselier model to viscoplastic temperature dependent materials. Int J Fract 116:81–101

    Article  Google Scholar 

  266. Tanguy B, Besson J, Piques R, Pineau A (2005) Ductile to brittle transition of an A508 steel characterized by Charpy impact test: Part II: modeling of the Charpy transition curve. Eng Fract Mech 72:413–434

    Article  Google Scholar 

  267. Tanguy B, Luu T, Perrin G, Pineau A, Besson J (2008) Plastic and damage behaviour of a high strength X100 pipeline steel: experiments and modeling. Int J Press Vessels Pip 85:322–335

    Article  Google Scholar 

  268. Tanaka J (1970) Fractographic analysis of the low energy fracture of an aluminium alloy. Review of developments in plane strain fracture toughness testing. In: ASTM STP 463, pp 191–215

    Google Scholar 

  269. Tanaka K, Mori T, Nakamura T (1970) Cavity formation at the interface of a spherical inclusion in a plastically deformed matrix. Phil Mag 21(170):267–279

    Article  Google Scholar 

  270. Thomson C, Worswick M, Pilkey A, Lloyd D (2003) Void coalescence within periodic clusters of particles. J Mech Phys Solids 51:127–146

    Article  MATH  Google Scholar 

  271. Thomason P (1968) A theory for ductile fracture by internal necking of cavities. J Inst Metals 96:360–365

    Google Scholar 

  272. Thomason P (1985) A three-dimensional model for ductile fracture by the growth and coalescence of microvoids. Acta Metall 33(6):1087–1095

    Article  Google Scholar 

  273. Thomason P (1985) Three-dimensional models for the plastic limit-loads at incipient failure of the intervoid matrix in ductile porous solids. Acta Metall 33(6):1079–1085

    Article  Google Scholar 

  274. Thomason P (1990) Ductile fracture of metals, 1st edn. Pergamon Press, Oxford. ISBN 0-08-040178-3

    Google Scholar 

  275. Thomason P (1998) A view on ductile-fracture modeling. Fatigue Fract Eng Mater Struct 21:1105–1122

    Article  Google Scholar 

  276. Tipper C (1948) The fracture of metals. Metallurgia: Br J Metals 133–137

    Google Scholar 

  277. Tvergaard V (1981) Influence of voids on shear band instabilities under plane strain conditions. Int J Fract 17(4):389–407

    Article  Google Scholar 

  278. Tvergaard V (1982) Material failure by void coalescence in localized shear bands. Int J Solids Struct 18(8):659–672

    Article  MATH  Google Scholar 

  279. Tvergaard V (1982) On localization in ductile materials containing spherical voids. Int J Fract 18:237–252

    Google Scholar 

  280. Tvergaard V, Needleman A (1995) Effects of nonlocal damage in porous plastic solids. Int J Solids Struct 32(8-9):1063–1077

    Article  MATH  Google Scholar 

  281. Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32(1):157–169

    Article  Google Scholar 

  282. Van Stone R, Cox TB, Low J Jr, Psioda J (1985) Microstructural aspects of fracture by dimpled rupture. Int Metals Rev 30:157–179

    Google Scholar 

  283. Verein Deutscher Eisenhüttenleute (1996) Erscheinungsformen von Rissen und Brüchen metallischer Werkstoffe, 2nd edn. Verlag Stahleisen GmbH, Düsseldorf

    Google Scholar 

  284. Weck A, Wilkinson D, Toda H, Maire E (2006) 2D and 3D visualization of ductile fracture. Adv Eng Mater 8:469–472

    Article  Google Scholar 

  285. Weck A (2007) The role of coalescence on ductile fracture. Dissertation, McMaster University, Hamilton Ontario

    Google Scholar 

  286. Weck A, Segurado J, LLorca J, Wilkinson D, Böhm H (2008) Numerical simulations of void linkage in model materials using a nonlocal ductile damage approximation. Int J Fract 148:205–219

    Article  Google Scholar 

  287. Weck A, Wilkinson D (2008) Experimental investigation of void coalescence in metallic sheets containing laser drilled holes. Acta Mater 56:1774–1784

    Article  Google Scholar 

  288. Weinrich P, French I (1976) The influence of hydrostatic pressure on the fracture mechanisms of sheet tensile specimens of copper and brass. Acta Metall 24:317–322

    Article  Google Scholar 

  289. Wilson D (1971) Effects of second-phase particles on formability at room temperature, Effect of second-phase particles on the mechanical properties of steel. Scarborough GB 28–36

    Google Scholar 

  290. Wilsdorf H (1975) Void initiation, growth, and coalescence in ductile fracture of metals. J Electron Mater 4(5):791–809

    Article  Google Scholar 

  291. Wood I (1963) Fracture and deformation of sulfide inclusions in steel. Trans ASME 56:770–773

    Google Scholar 

  292. Xia L, Shih CF (1995) Ductile crack growth—I. A numerical study using computational cells with microstructurally-based length scales. J Mech Phys Solids 43(2):233–259

    Article  MATH  Google Scholar 

  293. Zhang ZL, Thaulow C, Odegard J (2000) A complete Gurson model approach for ductile fracture. Eng Fract Mech 67:155–168

    Article  Google Scholar 

  294. Zhang ZL, Skallerud B (2010) Void coalescence with and without prestrain history. Int J Damage Mech 19:153–174

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Seidenfuss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Seidenfuss, M., Linse, T. (2016). Micromechanical-Based Models for Describing Damage of Ferritic Steels. In: Hütter, G., Zybell, L. (eds) Recent Trends in Fracture and Damage Mechanics. Springer, Cham. https://doi.org/10.1007/978-3-319-21467-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21467-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21466-5

  • Online ISBN: 978-3-319-21467-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics