Skip to main content

Advertisement

Log in

The therapeutic candidate for immune checkpoint inhibitors elucidated by the status of tumor-infiltrating lymphocytes (TILs) and programmed death ligand 1 (PD-L1) expression in triple negative breast cancer (TNBC)

  • Original Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Background

The status of tumor-infiltrating lymphocytes (TILs) is a prognostic factor for triple negative breast cancer (TNBC). Recent studies have shown that programmed cell death 1 (PD-1) or programmed death ligand 1 (PD-L1) is expressed on T lymphocytes or tumor cells modulating antitumor immunity. The regulation of immune checkpoints between tumor cells and T lymphocytes may serve as a target for improvement of TNBC prognosis. We investigated TILs and PD-L1 status in TNBCs before or after preoperative systemic therapy (PST) to elucidate the clinical significance of PD-L1 expression.

Methods

Ninety patients received PST, and materials of core needle biopsies (CNB) taken before PST were available for 32 patients. TILs were scored as “% stromal”, and tumors were defined as High-TILs (≥30%) or Low-TILs (<30%). The expression of PD-L1 was assessed by immunohistochemistry.

Results

TILs status in CNB is significant in pathological therapeutic grade: 1 vs. 2 or 3 (p = 0.0359). Disease-free survival (DFS) in patients with Low-TIL tumors were significantly worse than those with High-TIL tumors (p = 0.0383), but overall survival (OS) showed no significance (p = 0.0772). However, in patients with Low-TIL tumors, both DFS and OS in patients with High-PD-L1 expression were extremely unfavorable than in patients with Low-PD-L1 expression (p = 0.0032, p = 0.0002).

Conclusion

The patients with TNBCs with combined Low-TILs and High-PD-L1 status in pre-PST situation showed unfavorable prognosis. The subset of TNBCs with Low-TILs and High-PD-L1 status could be the therapeutic target for immune checkpoint inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liedtke C, Mazouni C, Hess KR, André F, Tordai A, Mejia JA, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008;26:1275–81.

    Article  PubMed  Google Scholar 

  2. Mohammed ZM, Going JJ, Edwards J, Elsberger B, McMillan DC. The relationship between lymphocyte subsets and clinico-pathological determinants of survival in patients with primary operable invasive ductal breast cancer. Br J Cancer. 2013;109:1676–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02–98. J Clin Oncol. 2013;31:860–7.

    Article  CAS  PubMed  Google Scholar 

  4. Loi S, Michiels S, Salgado R, Sirtaine N, Jose V, Fumagalli D, et al. Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol. 2014;25:1544–50.

    Article  CAS  PubMed  Google Scholar 

  5. Adams S, Gray RJ, Demaria S, Goldstein L, Perez EA, Shulman LN, et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol. 2014;32:2959–66.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Denkert C, Loibl S, Noske A, Roller M, Müller BM, Komor M, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol. 2010;28:105–13.

    Article  CAS  PubMed  Google Scholar 

  7. Denkert C, von Minckwitz G, Brase JC, Sinn BV, Gade S, Kronenwett R, et al. Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol. 2015;33:983–91.

    Article  CAS  PubMed  Google Scholar 

  8. Miyashita M, Sasano H, Tamaki K, Chan M, Hirakawa H, Suzuki A, et al. Tumor-infiltrating CD8+ and FOXP3+ lymphocytes in triple-negative breast cancer: its correlation with pathological complete response to neoadjuvant chemotherapy. Breast Cancer Res Treat. 2014;148:525–34.

    Article  CAS  PubMed  Google Scholar 

  9. Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris AL, et al. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol. 2006;24:5373–80.

    Article  PubMed  Google Scholar 

  10. Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH, et al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol. 2011;29:1949–55.

    Article  PubMed  Google Scholar 

  11. Liu S, Lachapelle J, Leung S, Gao D, Foulkes WD, Nielsen TO. CD8+ lymphocyte infiltration is an independent favorable prognostic indicator in basal-like breast cancer. Breast Cancer Res. 2012;14:R48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Droeser R, Zlobec I, Kilic E, Güth U, Heberer M, Spagnoli G, et al. Differential pattern and prognostic significance of CD4+ , FOXP3+ , and IL-17+ tumor infiltrating lymphocytes in ductal and lobular breast cancers. BMC Cancer. 2012;12:134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cimino-Mathews A, Ye X, Meeker A, Argani P, Emens LA. Metastatic triple-negative breast cancers at first relapse have fewer tumor-infiltrating lymphocytes than their matched primary breast tumors: a pilot study. Hum Pathol. 2013;44:2055–63.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Takenaka M, Seki N, Toh U, Hattori S, Kawahara A, Yamaguchi T, et al. FOXP3 expression in tumor cells and tumor-infiltrating lymphocytes is associated with breast cancer prognosis. Mol Clin Oncol. 2013;1:625–32.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Seo AN, Lee HJ, Kim EJ, Kim HJ, Jang MH, Lee HE, et al. Tumour-infiltrating CD8+ lymphocytes as an independent predictive factor for pathological complete response to primary systemic therapy in breast cancer. Br J Cancer. 2013;109:2705–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Miyashita M, Sasano H, Tamaki K, Hirakawa H, Takahashi Y, Nakagawa S, et al. Prognostic significance of tumor-infiltrating CD8+ and FOXP3+ lymphocytes in residual tumors and alterations in these parameters after neoadjuvant chemotherapy in triple-negative breast cancer: a retrospective multicenter study. Breast Cancer Res. 2015;17:124.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Soliman H, Khalil F, Antonia S. PD-L1 expression is increased in a subset of basal type breast cancer cells. PLoS One. 2014;9:e88557.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schalper KA, Velcheti V, Carvajal D, Wimberly H, Brown J, Pusztai L, et al. In situ tumor PD-L1 mRNA expression is associated with increased TILs and better outcome in breast carcinomas. Clin Cancer Res. 2014;20:2773–82.

    Article  CAS  PubMed  Google Scholar 

  19. Schalper KA. PD-L1 expression and tumor-infiltrating lymphocytes: Revisiting the antitumor immune response potential in breast cancer. Oncoimmunology. 2014;3:e29288.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stagg J, Allard B. Immunotherapeutic approaches in triple-negative breast cancer: latest research and clinical prospects. Ther Adv Med Oncol. 2013;5:169–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Muenst S, Schaerli AR, Gao F, Daster S, Trella E, Droeser RA, et al. Expression of programmed death ligand 1 (PD-L1) is associated with poor prognosis in human breast cancer. Breast Cancer Res Treat. 2014;46:15–24.

    Article  Google Scholar 

  23. Ahn SG, Jeong J, Hong S. Jung WH (2015) Current issues and clinical evidence in tumor-infiltrating lymphocytes in breast cancer. J Pathol Transl Med. 2015;49:355–63.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs working group 2014. Ann Oncol. 2015;26:259–71.

    Article  CAS  PubMed  Google Scholar 

  25. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372:2018–28.

    Article  PubMed  Google Scholar 

  26. Ménard S, Tomasic G, Casalini P, Balsari A, Pilotti S, Cascinelli N, et al. Lymphoid infiltration as a prognostic variable for early-onset breast carcinomas. Clin Cancer Res. 1997;3:817–9.

    PubMed  Google Scholar 

  27. Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16:275–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Taube JM, Ander RA, Young GD, Xu H, Sharma R, McMiller TL, et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med. 2012;4:127ra37.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Teng MWL, Ngiow TSF, Ribas A, Smyth MJ. Classifying cancers based on T-cell infiltrating and PD-L1. Cancer Res. 2015;75(11):2139–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369:134–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515:563–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ribas A, Puzanov I, Dummer R, Schadendorf D, Hamid O, Robert C, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 2015;16:908–18.

    Article  CAS  PubMed  Google Scholar 

  35. Sunshine J. Taube JM (2015) PD-1/PD-L1 inhibitors. Curr Opin Pharmacol. 2015;23:32–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Baras AS, Drake C, Liu JJ, Gandhi N, Kates M, Hoque MO, et al. The ratio of CD8 to Treg tumor-infiltrating lymphocytes is associated with response to cisplatin-based neoadjuvant chemotherapy in patients with muscle invasive urothelial carcinoma of the bladder. Oncoimmunology. 2016;5(5):e1134412.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015;372(21):2006–17.

    Article  PubMed  Google Scholar 

  38. Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, et al. Checkpoint blockade cancer immunotherapy targets tumor-specific mutant antigens. Nature. 2014;515:577–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Naing A, Papadopoulos KP, Autio KA, Ott PA, Patel MR, Wong DJ, et al. Safty, antitumor activity, and immune activation of pegylated recombinant human Interleukin-10 (AM0010) in patients with advanced solid tumors. J Clin Oncol. 2016;34:3562–9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the patients, their families, and the study personnel across all sites for participating in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Takahashi.

Ethics declarations

Conflict of interest

All the authors have declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomioka, N., Azuma, M., Ikarashi, M. et al. The therapeutic candidate for immune checkpoint inhibitors elucidated by the status of tumor-infiltrating lymphocytes (TILs) and programmed death ligand 1 (PD-L1) expression in triple negative breast cancer (TNBC). Breast Cancer 25, 34–42 (2018). https://doi.org/10.1007/s12282-017-0781-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-017-0781-0

Keywords

Navigation