Skip to main content

Advertisement

Log in

Influence of the C5a–C5a receptor system on breast cancer progression and patient prognosis

  • Original Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Background

Emerging evidence has shown activation of the complement system in cancer tissues and anaphylatoxin C5a release from C5 by cancer cells, suggesting C5a as a component in the cancer microenvironment. We revealed aberrant expression of C5a receptor (C5aR) in various human cancers and C5a-elicited enhancement of C5aR-expressing cancer cell invasion.

Methods

To explore an influence of the C5a–C5aR system in breast cancer (BC), we investigated BC C5aR expression in relation to clinicopathological parameters of the patients and an effect of C5a on BC cell proliferation.

Results

BC cell C5aR expression was observed immunohistochemically in 22 of 171 patients (13 %) and related to larger tumor size, higher nuclear grade and Ki-67 labeling index, presence of lymph node metastasis and advanced clinical stages. Interestingly, BC cells were C5aR-negative in all patients with BC in situ and C5aR-positive rate was high (38 %) in patients with hormone receptor-negative, namely triple-negative BC. For BC cells in metastasized lymph nodes, 12 of 22 patients (55 %) were C5aR-positive and included 7 patients with C5aR-negative BC in the primary site. Survival rate of patients with C5aR-positive BC was lower than that of patients with C5aR-negative BC. C5a enhanced proliferation of C5aR-expressing triple-negative BC cells in a C5aR-dependent manner.

Conclusion

Relation of BC C5aR expression to tumor development and poor prognosis of the patients and proliferation enhancing effect of C5a on C5aR-expressing BC cells suggest that the C5a–C5aR system is closely associated with BC progression. This system may be a new target to treat BC patients, particularly with triple-negative BC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BC:

Breast cancer

C5:

The fifth complement component

C5aR:

C5a-receptor

TNBC:

Triple-negative breast cancer

RFS:

Relapse-free survival

DRFS:

Distant relapse-free survival

BCSS:

Breast cancer-specific survival

References

  1. Siegel R, Naishadham MA, Jemal ADV. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.

    Article  PubMed  Google Scholar 

  2. Anderson WF, Rosenberg PS, Prat A, Perou CM, Sherman ME. How many etiological subtypes of BC: two, three, four, or more ? J Natl Cancer Inst. 2014;106(8):dju165. doi:10.1093/jnci/dju165.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gucalp A, Traina TA. Triple-negative BC: adjuvant therapeutic options. Chemother Res Prac 2011;696208. doi:10.1155/2011/696208.

  4. Carey L, Winer E, Viale G, Cameron D, Gianni L. Triple-negative cancer: disease entity or title of convenience? Nat Rev Clin Oncol. 2010;7:683–92.

    Article  PubMed  Google Scholar 

  5. Iwase H, Kurebayashi J, Tsuda H, Ohta T, Kurosumi M, et al. Clinicopathological analyses of triple negative breast cancer using surveyance data from the Registration Committee of the Japanese breast cancer society. Breast Cancer. 2010;17:118–24.

    Article  PubMed  Google Scholar 

  6. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al. Triple-negative BC. Clinical features and patterns of recurrence. Cin Cancer Res. 2007;13:4429–34.

    Article  Google Scholar 

  7. DiScipio RG, Smith CA, Müller-Eberhard HJ, Hugli TE. The activation of human complement component C5 by a fluid phase C5 convertase. J Biol Chem. 1983;258:10629–36.

    CAS  PubMed  Google Scholar 

  8. Guo RF, Ward PA. Role of C5a in inflammatory responses. Annu Rev Immunol. 2005;23:821–52.

    Article  CAS  PubMed  Google Scholar 

  9. Markiewski MM, Lambris JD. The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am J Pathol. 2007;171:715–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Niculescu F, Rus HG, Retegan M, Vlaicu R. Persistent complement activation on tumor cells in BC. Am J Pathol. 1992;140:1039–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bjørge L, Hakulinen J, Vintermyr OK, Jarva H, Jensen TS, Iversen OE, et al. Ascitic complement system in ovarial cancer. Br J Cancer. 2005;92:895–905.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Markiewski MM, DeAngelis RA, Benencia F, Ricklin-Lichtsteiner SK, Koutoulaki A, Gerard C, et al. Modulation of the antitumor immune response by complement. Nat Immunol. 2008;9:1225–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Corrales L, Ajona D, Rafail S, Lasarte JJ, Riezu-Boj JI, Lambris JD, et al. Anaphylatoxin C5a creates a favorable microenvironment for lung cancer progression. J Immunol. 2012;186:4674–83.

    Article  Google Scholar 

  14. Nitta H, Murakami Y, Wada Y, Eto M, Baba H, Imamura T. Cancer cells release anaphylatoxin C5a from C5 by serine protease to enhance invasiveness. Oncol Rep. 2014;32:1715–9.

    CAS  PubMed  Google Scholar 

  15. Nitta H, Wada Y, Kawano Y, Murakami Y, Irie A, Taniguchi K, et al. Enhancement of human cancer cell motility and invasiveness by anaphylatoxin C5a via aberrantly expressed C5a receptor (CD88). Clin Cancer Res. 2013;19:2004–13.

    Article  CAS  PubMed  Google Scholar 

  16. Yamamoto-Ibusuki M, Yamamoto Y, Yamamoto S, Fujiwara S, Fu P, et al. Comparison of prognostic values between combined immunohistochemical score of estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, K1-67 and the corresponding gene expression score in breast cancer. Modern Pathol. 2013;26:79–86.

    Article  CAS  Google Scholar 

  17. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  18. Finn RS, Dering J, Conklin D, Kalous O, Cohen D, Desai A, et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive breast cancer cell lines in vitro. Breast Cancer Res. 2009;11:R77.

    Article  PubMed  PubMed Central  Google Scholar 

  19. van de Vijer MJ. Molecular tests as prognostic factors in breast cancer. Virchows Arch. 2014;464:283–91.

    Article  Google Scholar 

  20. Ring A, Dowsett M. Mechanisms of tamoxifen resistance. Endocr Relat Cancer. 2004;11:643–58.

    Article  CAS  PubMed  Google Scholar 

  21. Valabrega G, Montemurro F, Sarotto I, Petorelli A, Rubini P, Tacchetti C, et al. TGFα expression impairs trastuzumab-induced HER2 downregulation. Oncogene. 2005;24:3002–10.

    Article  CAS  PubMed  Google Scholar 

  22. Higgins MJ, Baselga J. Targeted therapies for breast cancer. J Clin Invest. 2011;121:3797–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gu J, Ding J-Y, Lu C-L, Lin Z-W, Chu Y-W, Zhao G-Y, et al. Overexpression of CD88 predicts poor prognosis in non-small-cell lung cancer. Lung Cancer. 2013;81:259–65.

    Article  PubMed  Google Scholar 

  24. Cai K, Wan Y, Wang Z, Wang Y, Zhao XJ, Bao XL. C5a promotes the proliferation of human nasopharyngeal carcinoma cells through PCAF-mediated STAT3 acetylation. Oncol Rep. 2014;32:2260–6.

    CAS  PubMed  Google Scholar 

  25. Wada Y, Maeda Y, Kubo T, Kikuchi K, Eto M, Imamura T. Relation of anaphylatoxin C5a receptor (CD88) expression of urothelial cancer to poor prognosis of patients treated by radical cystectomy or nephro-ureterectomy. Oncol Lett 2015; (in press).

  26. Cho MS, Vasquez HG, Rupaimoole R, Pradeep S, Wu S, Zand B, et al. Autocrine effects of tumor-derived complement. Cell Rep. 2014;6:1–11.

    Article  Google Scholar 

  27. Gerard C, Gerard NP. C5A anaphylatoxin and its seven transmembrane-segment receptor. Annu Rev Immunol. 1994;12:775–808.

    Article  CAS  PubMed  Google Scholar 

  28. Müller A, Homey H, Soto H, Ge N, Carton D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410:50–6.

    Article  PubMed  Google Scholar 

  29. Roland J, Murphy BJ, Ahr B, Robert-Hebmann V, Delauzun V, Ke Nye, et al. Role of the intracellular domains of CXCR4 in SDF-1-mediated signaling. Blood. 2003;101:399–406.

    Article  CAS  PubMed  Google Scholar 

  30. Sun X, Wei L, Chen Q, Terek RM. CXCR4/SDF-1 mediate hypoxia induced chondrosarcoma cell invasion through ERK signaling and increased MMP1 expression. Mol Cancer. 2010;9:17.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Maeda Y, Kawano Y, Wada Y, Yatsuda J, Motoshima T, Murakami Y, et al. C5aR is frequently expressed in metastatic renal cell carcinoma and plays a crucial role in cell invasion via the ERK and PI3 kinase pathways. Oncol Rep. 2015;33:1844–50.

    PubMed  Google Scholar 

  32. Liang Z, Yoon Y, Votaw J, Goodman MM, Williams L, Shim H. Silencing of CXCR4 blocks breast cancer metastasis. Cancer Res. 2005;65:967–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sobolik T, Sun YJ, Wells S, Ayers GD, Cook RS, Richmond A. CXCR4 drives the metastatic phenotype in breast cancer through induction of CXCR2 and activation of MEK and PI3 pathways. Mol Biol Cell. 2014;25:566–82.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Larue L, Bellacosa A. Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene. 2005;24:7443–54.

    Article  CAS  PubMed  Google Scholar 

  35. Kang H, Watkins G, Douglas-Jones A, Mansel RE, Jiang WG. The elevated levels of CXCR4 is correlated with nodal metastasis of human breast cancer. Breast. 2005;14:360–7.

    Article  PubMed  Google Scholar 

  36. Su YC, Wu MT, Huang CJ, Hou MF, Yang SF, Chai CY. Expression of CXCR4 is associated with axillary lymph node status in patients with early breast cancer. The Breast. 2006;15:533–9.

    Article  PubMed  Google Scholar 

  37. Hasaan S, Buchanan M, Jahan K, Aguila-Mahecha A, Gaboury L, Muller WJ, et al. CXCR4 peptide antagonist inhibits primary breast tumor growth, metastasis and enhances the efficacy of anti-VEGF treatment or docetaxel in a transgenic mouse model. Int J Cancer. 2011;129:225–32.

    Article  Google Scholar 

  38. Ling X, Spaeth E, Chen Y, Shi Y, Zhang W, Schober W, et al. The CXCR4 antagonist AMD3465 regulates oncogenic signaling and invasiveness in vitro and prevents breast cancer growth and metastasis in vivo. PLoS ONE. 2013;8:e58426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gil M, Seshadri M, Komorowski MP, Abrams SI, Kozbor D. Targeting CXCL12/CXCR4 signaling with oncolytic virotherapy disrupts tumor vasculature and inhibits breast cancer metastasis. Proc Natl Acad Sci USA. 2013;110:E1291–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kusmartsev S, Nagaraj S, Gabrilovich DI. Tumor-associated CD8+ T cell tolerance induced by bone marrow-derived immature myeloid cells. J Immunol. 2005;175:4583–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nozawa H, Chiu C, Hanahan D. Infiltrating neutrons mediate the initial angiogenic switch in a mouse model of multi-stage carcinogenesis. Proc Natl Acad Sci USA. 2006;103:12493–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Miss. Chisato Takagi, Yuki Teramoto, and Chihiro Murakami, Shokei University, Kumamoto, for their technical assistance. This work was supported in part by Japanese Science Progress Society KAKENHI Grants 22590363 and 25460498 to Takahisa Imamura and 25461982 to Toru Kariu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahisa Imamura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imamura, T., Yamamoto-Ibusuki, M., Sueta, A. et al. Influence of the C5a–C5a receptor system on breast cancer progression and patient prognosis. Breast Cancer 23, 876–885 (2016). https://doi.org/10.1007/s12282-015-0654-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-015-0654-3

Keywords

Navigation