Skip to main content

Advertisement

Log in

Animal model for mammary tumor growth in the bone microenvironment

  • Review Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Advanced breast cancer commonly spreads to the bones, lungs, liver or brain, and bone is the most common site of breast cancer metastasis. Nearly all patients with advanced breast cancer develop bone metastasis and suffer from serious bone metastasis-associated complications, including chronic pain, fracture, spinal cord compression and hypercalcemia. Metastasis formation in the bone is a complex process that requires cooperative reciprocal interactions between tumor cells and the cellular environment of the bone, which includes osteoclasts and osteoblasts. We have developed a murine bone invasion model of breast cancer, which required a simple surgical technique and mimics the biology of the disease. Osteolytic and/or osteoblastic lesions induced in the tumor-bone interface allowed us to explore cellular and molecular interactions between malignant cells and skeletal tissue in a syngeneic setting. In this review, we will discuss a different animal model that provides a consistent and reproducible platform for investigating the molecular mechanisms underlying tumor–bone interaction and breast cancer-induced osteolytic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Matsuda T, Marugame T, Kamo K, Katanoda K, Ajiki W, Sobue T. Cancer incidence and incidence rates in Japan in 2006: based on data from 15 population-based cancer registries in the monitoring of cancer incidence in Japan (MCIJ) project. Jpn J Clin Oncol. 2012;42:139–47. doi:10.1093/jjco/hyr184.

    Article  PubMed  Google Scholar 

  2. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62:10–29. doi:10.3322/caac.20138.

    Article  PubMed  Google Scholar 

  3. Yi M, Liu P, Li X, Mittendorf EA, He J, Ren Y, Nayeemuddin K, Hunt KK. Comparative analysis of clinicopathologic features, treatment, and survival of Asian women with a breast cancer diagnosis residing in the United States. Cancer. 2012;118:4117–25. doi:10.1002/cncr.27399.

    Article  PubMed  Google Scholar 

  4. Yip CH, Smith RA, Anderson BO, Miller AB, Thomas DB, Ang ES, Caffarella RS, Corbex M, Kreps GL, McTiernan A. Guideline implementation for breast healthcare in low- and middle-income countries: early detection resource allocation. Cancer. 2008;113:2244–56. doi:10.1002/cncr.23842.

    Article  PubMed  Google Scholar 

  5. Jensen AO, Jacobsen JB, Norgaard M, Yong M, Fryzek JP, Sorensen HT. Incidence of bone metastases and skeletal-related events in breast cancer patients: a population-based cohort study in Denmark. BMC Cancer. 2011;11:29. doi:10.1186/1471-2407-11-29.

    Article  PubMed  Google Scholar 

  6. Coleman RE. Future directions in the treatment and prevention of bone metastases. Am J clin oncol. 2002;25:S32–8.

    Article  PubMed  Google Scholar 

  7. Coleman RE, Rubens RD. The clinical course of bone metastases from breast cancer. Br J Cancer. 1987;55:61–6.

    Article  CAS  PubMed  Google Scholar 

  8. Diel IJ, Solomayer EF, Bastert G. Treatment of metastatic bone disease in breast cancer: bisphosphonates. Clin Breast Cancer. 2000;1:43–51.

    Article  CAS  PubMed  Google Scholar 

  9. Smith MR, Saad F, Coleman R, Shore N, Fizazi K, Tombal B, Miller K, Sieber P, Karsh L, Damiao R, Tammela TL, Egerdie B, Van Poppel H, Chin J, Morote J, Gomez-Veiga F, Borkowski T, Ye Z, Kupic A, Dansey R, Goessl C. Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet. 2012;379:39–46. doi:10.1016/S0140-6736(11)61226-9.

    Article  CAS  PubMed  Google Scholar 

  10. Barton MK. Denosumab an option for patients with bone metastasis from breast cancer. CA Cancer J Clin. 2011;61:135–6. doi:10.3322/caac.20116.

    Article  PubMed  Google Scholar 

  11. Charhon SA, Chapuy MC, Delvin EE, Valentin-Opran A, Edouard CM, Meunier PJ. Histomorphometric analysis of sclerotic bone metastases from prostatic carcinoma special reference to osteomalacia. Cancer. 1983;51:918–24.

    Article  CAS  PubMed  Google Scholar 

  12. Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002;2:584–93. doi:10.1038/nrc867nrc867.

    Article  CAS  PubMed  Google Scholar 

  13. Leibbrandt A, Penninger JM. RANKL/RANK as key factors for osteoclast development and bone loss in arthropathies. Adv Exp Med Biol. 2009;649:100–13.

    Article  CAS  PubMed  Google Scholar 

  14. Delaisse JM, Andersen TL, Engsig MT, Henriksen K, Troen T, Blavier L. Matrix metalloproteinases (MMP) and cathepsin K contribute differently to osteoclastic activities. Microsc Res Tech. 2003;61:504–13. doi:10.1002/jemt.10374.

    Article  CAS  PubMed  Google Scholar 

  15. Guo B, Villeneuve DJ, Hembruff SL, Kirwan AF, Blais DE, Bonin M, Parissenti AM. Cross-resistance studies of isogenic drug-resistant breast tumor cell lines support recent clinical evidence suggesting that sensitivity to paclitaxel may be strongly compromised by prior doxorubicin exposure. Breast Cancer Res Treat. 2004;85:31–51. doi:10.1023/B:BREA.0000021046.29834.12.

    Article  CAS  PubMed  Google Scholar 

  16. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA, Massague J. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003;3:537–49.

    Article  CAS  PubMed  Google Scholar 

  17. Kuperwasser C, Dessain S, Bierbaum BE, Garnet D, Sperandio K, Gauvin GP, Naber SP, Weinberg RA, Rosenblatt M. A mouse model of human breast cancer metastasis to human bone. Cancer Res. 2005;65:6130–8. doi:10.1158/0008-5472.can-04-1408.

    Article  CAS  PubMed  Google Scholar 

  18. Murphy BO, Joshi S, Kessinger A, Reed E, Sharp JG. A murine model of bone marrow micrometastasis in breast cancer. Clin Exp Metastasis. 2002;19:561–9.

    Article  PubMed  Google Scholar 

  19. Nemeth JA, Harb JF, Barroso U Jr, He Z, Grignon DJ, Cher ML. Severe combined immunodeficient-hu model of human prostate cancer metastasis to human bone. Cancer Res. 1999;59:1987–93.

    CAS  PubMed  Google Scholar 

  20. Reddi AH, Roodman D, Freeman C, Mohla S. Mechanisms of tumor metastasis to the bone: challenges and opportunities. J Bone Miner Res. 2003;18:190–4. doi:10.1359/jbmr.2003.18.2.190.

    Article  CAS  PubMed  Google Scholar 

  21. Shtivelman E, Namikawa R. Species-specific metastasis of human tumor cells in the severe combined immunodeficiency mouse engrafted with human tissue. Proc Natl Acad Sci USA. 1995;92:4661–5.

    Article  CAS  PubMed  Google Scholar 

  22. Yoneda T, Hiraga T. Crosstalk between cancer cells and bone microenvironment in bone metastasis. Biochem Biophys Res Commun. 2005;328:679–87. doi:10.1016/j.bbrc.2004.11.070.

    Article  CAS  PubMed  Google Scholar 

  23. Hiraga T, Ueda A, Tamura D, Hata K, Ikeda F, Williams PJ, Yoneda T. Effects of oral UFT combined with or without zoledronic acid on bone metastasis in the 4T1/luc mouse breast cancer. Int J cancer. 2003;106:973–9. doi:10.1002/ijc.11330.

    Article  CAS  PubMed  Google Scholar 

  24. Iguchi H, Tanaka S, Ozawa Y, Kashiwakuma T, Kimura T, Hiraga T, Ozawa H, Kono A. An experimental model of bone metastasis by human lung cancer cells: the role of parathyroid hormone-related protein in bone metastasis. Cancer Res. 1996;56:4040–3.

    CAS  PubMed  Google Scholar 

  25. Zhu L, Loo WT, Chow LW. Circulating tumor cells in patients with breast cancer: possible predictor of micro-metastasis in bone marrow but not in sentinel lymph nodes. Biomed Pharmacother 2005; 59 Suppl 2: S355–8.

    Google Scholar 

  26. Abramson VG, Mayer IA. Clinical utility of serum tumor markers and circulating tumor cell assays in the treatment of breast cancer. Curr Treat Options Oncol. 2011;12:403–11. doi:10.1007/s11864-011-0164-2.

    Article  PubMed  Google Scholar 

  27. Reyal F, Valet F, de Cremoux P, Mathiot C, Decraene C, Asselain B, Brain E, Delaloge S, Giacchetti S, Marty M, Pierga JY, Bidard FC. Circulating tumor cell detection and transcriptomic profiles in early breast cancer patients. Ann Oncol Off J European Soc Med Oncol/ESMO. 2011;22:1458–9. doi:10.1093/annonc/mdr144.

    Article  CAS  Google Scholar 

  28. Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 1989;8:98–101.

    CAS  PubMed  Google Scholar 

  29. Patel SA, Dave MA, Murthy RG, Helmy KY, Rameshwar P. Metastatic breast cancer cells in the bone marrow microenvironment: novel insights into oncoprotection. Oncol Rev. 2011;5:93–102. doi:10.1007/s12156-010-0071-y.

    Article  PubMed  Google Scholar 

  30. Siclari VA, Guise TA, Chirgwin JM. Molecular interactions between breast cancer cells and the bone microenvironment drive skeletal metastases. Cancer Metastasis Rev. 2006;25:621–33. doi:10.1007/s10555-006-9023-1.

    Article  CAS  PubMed  Google Scholar 

  31. Luis-Ravelo D, Anton I, Vicent S, Hernandez I, Valencia K, Zandueta C, Martinez-Canarias S, Gurpide A, Lecanda F. Tumor-stromal interactions of the bone microenvironment: in vitro findings and potential in vivo relevance in metastatic lung cancer models. Clin Exp Metastasis. 2011;28:779–91. doi:10.1007/s10585-011-9409-5.

    Article  CAS  PubMed  Google Scholar 

  32. Sosnoski DM, Krishnan V, Kraemer WJ, Dunn-Lewis C, Mastro AM. Changes in cytokines of the bone microenvironment during breast cancer metastasis. Int J Breast cancer. 2012;2012:160265. doi:10.1155/2012/160265.

    PubMed  Google Scholar 

  33. Lynch CC, Hikosaka A, Acuff HB, Martin MD, Kawai N, Singh RK, Vargo-Gogola TC, Begtrup JL, Peterson TE, Fingleton B, Shirai T, Matrisian LM, Futakuchi M. MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell. 2005;7:485–96.

    Article  CAS  PubMed  Google Scholar 

  34. Aslakson CJ, Miller FR. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res. 1992;52:1399–405.

    CAS  PubMed  Google Scholar 

  35. Huang X, Wong MK, Yi H, Watkins S, Laird AD, Wolf SF, Gorelik E. Combined therapy of local and metastatic 4T1 breast tumor in mice using SU6668, an inhibitor of angiogenic receptor tyrosine kinases, and the immunostimulator B7.2-IgG fusion protein. Cancer Res. 2002;62:5727–35.

    CAS  PubMed  Google Scholar 

  36. Sloan EK, Stanley KL, Anderson RL. Caveolin-1 inhibits breast cancer growth and metastasis. Oncogene. 2004;23:7893–7. doi:10.1038/sj.onc.1208062.

    Article  CAS  PubMed  Google Scholar 

  37. Lelekakis M, Moseley JM, Martin TJ, Hards D, Williams E, Ho P, Lowen D, Javni J, Miller FR, Slavin J, Anderson RL. A novel orthotopic model of breast cancer metastasis to bone. Clin Exp Metastasis. 1999;17:163–70.

    Article  CAS  PubMed  Google Scholar 

  38. Heppner GH, Miller FR, Shekhar PM. Nontransgenic models of breast cancer. Breast cancer Res BCR. 2000;2:331–4.

    Article  CAS  Google Scholar 

  39. Kakonen SM, Mundy GR. Mechanisms of osteolytic bone metastases in breast carcinoma. Cancer. 2003;97:834–9. doi:10.1002/cncr.11132.

    Article  PubMed  Google Scholar 

  40. Hiraga T, Myoui A, Choi ME, Yoshikawa H, Yoneda T. Stimulation of cyclooxygenase-2 expression by bone-derived transforming growth factor-beta enhances bone metastases in breast cancer. Cancer Res. 2006;66:2067–73. doi:10.1158/0008-5472.can-05-2012.

    Article  CAS  PubMed  Google Scholar 

  41. Guise TA, Mohammad KS, Clines G, Stebbins EG, Wong DH, Higgins LS, Vessella R, Corey E, Padalecki S, Suva L, Chirgwin JM. Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin Cancer Res. 2006;12:6213s–6s. doi:10.1158/1078-0432.ccr-06-1007.

    Article  CAS  PubMed  Google Scholar 

  42. Kakonen SM, Selander KS, Chirgwin JM, Yin JJ, Burns S, Rankin WA, Grubbs BG, Dallas M, Cui Y, Guise TA. Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways. J Biol Chem. 2002;277:24571–8. doi:10.1074/jbc.M202561200.

    Article  CAS  PubMed  Google Scholar 

  43. Bierie B, Moses HL. Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer. 2006;6:506–20. doi:10.1038/nrc1926.

    Article  CAS  PubMed  Google Scholar 

  44. Oft M, Heider KH, Beug H. TGFbeta signaling is necessary for carcinoma cell invasiveness and metastasis. Curr Biol CB. 1998;8:1243–52.

    Article  CAS  Google Scholar 

  45. Oft M, Peli J, Rudaz C, Schwarz H, Beug H, Reichmann E. TGF-beta1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev. 1996;10:2462–77.

    Article  CAS  PubMed  Google Scholar 

  46. Bierie B, Stover DG, Abel TW, Chytil A, Gorska AE, Aakre M, Forrester E, Yang L, Wagner KU, Moses HL. Transforming growth factor-beta regulates mammary carcinoma cell survival and interaction with the adjacent microenvironment. Cancer Res. 2008;68:1809–19. doi:10.1158/0008-5472.can-07-5597.

    Article  CAS  PubMed  Google Scholar 

  47. Massague J. TGF-beta signal transduction. Annu Rev Biochem. 1998;67:753–91. doi:10.1146/annurev.biochem.67.1.753.

    Article  CAS  PubMed  Google Scholar 

  48. Massague J, Gomis RR. The logic of TGFbeta signaling. FEBS Lett. 2006;580:2811–20. doi:10.1016/j.febslet.2006.04.033.

    Article  CAS  PubMed  Google Scholar 

  49. Futakuchi M, Nannuru KC, Varney ML, Sadanandam A, Nakao K, Asai K, Shirai T, Sato SY, Singh RK. Transforming growth factor-beta signaling at the tumor-bone interface promotes mammary tumor growth and osteoclast activation. Cancer Sci. 2009;100:71–81. doi:10.1111/j.1349-7006.2008.01012.x.

    Article  CAS  PubMed  Google Scholar 

  50. Warwick-Davies J, Lowrie DB, Cole PJ. Selective deactivation of human monocyte functions by TGF-beta. J Immun. 1995;155:3186–93.

    CAS  PubMed  Google Scholar 

  51. Fuller K, Lean JM, Bayley KE, Wani MR, Chambers TJ. A role for TGFbeta(1) in osteoclast differentiation and survival. J Cell Sci. 2000;113(Pt 13):2445–53.

    CAS  PubMed  Google Scholar 

  52. Sells Galvin RJ, Gatlin CL, Horn JW, Fuson TR. TGF-beta enhances osteoclast differentiation in hematopoietic cell cultures stimulated with RANKL and M-CSF. Biochem Biophys Res Commun. 1999;265:233–9. doi:10.1006/bbrc.1999.1632.

    Article  CAS  PubMed  Google Scholar 

  53. Fox SW, Haque SJ, Lovibond AC, Chambers TJ. The possible role of TGF-beta-induced suppressors of cytokine signaling expression in osteoclast/macrophage lineage commitment in vitro. J Immunol (Baltimore, Md.: 1950) 2003; 170: 3679–3687.

    Google Scholar 

  54. Guise TA, Chirgwin JM. Transforming growth factor-beta in osteolytic breast cancer bone metastases. Clin Orthop Relat Res 2003; S32–38. doi : 10.1097/01.blo.0000093055.96273.69.

  55. Bandyopadhyay A, Agyin JK, Wang L, Tang Y, Lei X, Story BM, Cornell JE, Pollock BH, Mundy GR, Sun LZ. Inhibition of pulmonary and skeletal metastasis by a transforming growth factor-beta type I receptor kinase inhibitor. Cancer Res. 2006;66:6714–21. doi:10.1158/0008-5472.can-05-3565.

    Article  CAS  PubMed  Google Scholar 

  56. Sato S, Futakuchi M, Ogawa K, Asamoto M, Nakao K, Asai K, Shirai T. Transforming growth factor beta derived from bone matrix promotes cell proliferation of prostate cancer and osteoclast activation-associated osteolysis in the bone microenvironment. Cancer Sci. 2008;99:316–23. doi:10.1111/j.1349-7006.2007.00690.x.

    Article  CAS  PubMed  Google Scholar 

  57. Ohshiba T, Miyaura C, Inada M, Ito A. Role of RANKL-induced osteoclast formation and MMP-dependent matrix degradation in bone destruction by breast cancer metastasis. Br J Cancer. 2003;88:1318–26. doi:10.1038/sj.bjc.6600858.

    Article  CAS  PubMed  Google Scholar 

  58. Jimi E, Aoki K, Saito H, D’Acquisto F, May MJ, Nakamura I, Sudo T, Kojima T, Okamoto F, Fukushima H, Okabe K, Ohya K, Ghosh S. Selective inhibition of NF-kappa B blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nat Med. 2004;10:617–24. doi:10.1038/nm1054.

    Article  CAS  PubMed  Google Scholar 

  59. Wilson TJ, Nannuru KC, Futakuchi M, Sadanandam A, Singh RK. Cathepsin G enhances mammary tumor-induced osteolysis by generating soluble receptor activator of nuclear factor-kappaB ligand. Cancer Res. 2008;68:5803–11. doi:10.1158/0008-5472.CAN-07-5889.

    Article  CAS  PubMed  Google Scholar 

  60. Selak MA, Chignard M, Smith JB. Cathepsin G is a strong platelet agonist released by neutrophils. Biochem J. 1988;251:293–9.

    CAS  PubMed  Google Scholar 

  61. Fata JE, Kong YY, Li J, Sasaki T, Irie-Sasaki J, Moorehead RA, Elliott R, Scully S, Voura EB, Lacey DL, Boyle WJ, Khokha R, Penninger JM. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell. 2000;103:41–50.

    Article  CAS  PubMed  Google Scholar 

  62. Cao Y, Bonizzi G, Seagroves TN, Greten FR, Johnson R, Schmidt EV, Karin M. IKKalpha provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell. 2001;107:763–75.

    Article  CAS  PubMed  Google Scholar 

  63. Cao Y, Luo JL, Karin M. IkappaB kinase alpha kinase activity is required for self-renewal of ErbB2/Her2-transformed mammary tumor-initiating cells. Proc Natl Acad Sci USA. 2007;104:15852–7. doi:10.1073/pnas.0706728104.

    Article  CAS  PubMed  Google Scholar 

  64. Luo JL, Tan W, Ricono JM, Korchynskyi O, Zhang M, Gonias SL, Cheresh DA, Karin M. Nuclear cytokine-activated IKKalpha controls prostate cancer metastasis by repressing Maspin. Nature. 2007;446:690–4. doi:10.1038/nature05656.

    Article  CAS  PubMed  Google Scholar 

  65. Tan W, Zhang W, Strasner A, Grivennikov S, Cheng JQ, Hoffman RM, Karin M. Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature. 2011;470:548–53. doi:10.1038/nature09707.

    Article  CAS  PubMed  Google Scholar 

  66. Sadanandam A, Futakuchi M, Lyssiotis CA, Gibb WJ, Singh RK. A cross-species analysis of a mouse model of breast cancer-specific osteolysis and human bone metastases using gene expression profiling. BMC Cancer. 2011;11:304. doi:10.1186/1471-2407-11-304.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a research grant from the Scientific Support Programs for Cancer Research, Grant-in-Aid for Scientific Research on Innovative Areas, Ministry of Education, Culture, Sports, Science and Technology, a grant-in-aid for Scientific Research (C) from the Japan Society for the Promotion of Science, and Susan G. Komen for the Cure grant KG090860 (R.K.S).

Conflict of interest

The authors have declared that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuru Futakuchi.

About this article

Cite this article

Futakuchi, M., Singh, R.K. Animal model for mammary tumor growth in the bone microenvironment. Breast Cancer 20, 195–203 (2013). https://doi.org/10.1007/s12282-013-0439-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-013-0439-5

Keywords

Navigation