Skip to main content

Advertisement

Log in

Individualization of breast cancer based on histopathological features and molecular alterations

  • Conference Paper
  • Presidential symposium: Individualized diagnosis for tailored treatment of breast cancer
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Histopathological findings and molecular alterations well reflect the biological properties of individual primary breast carcinomas. Specifically, pT (size of the invasive component), pN (number of metastatic lymph nodes), histological or nuclear grade, lymphovascular invasion, hormone receptors, and HER2 (c-erbB-2) gene overexpresison or amplification are known to be effective markers for assessing the risk of operable primary breast carcinoma, albeit incompletely. It is expected that additional molecular markers and novel diagnostic tools will be developed in the future to facilitate a more accurate characterization of higher risk node-negative breast carcinomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CGH:

Comparative genomic hybridization

CK:

Cytokeratin

DCIS:

Ductal carcinoma in situ

EGFR:

Epidermal growth factor receptor

ER:

Estrogen receptor

HE:

Hematoxylin and eosin

IHC:

Immunohistochemistry

ITC:

Isolated tumor cells

LCIS:

Lobular carcinoma in situ

ly:

Lymphatic invasion

NCCN:

National Comprehensive Cancer Network

pCR:

Pathological complete response

PgR:

Progesterone receptor

PST:

Primary systemic therapies

SLN:

Sentinel lymph node

SNNS:

Sentinel lymph node navigation surgery

v:

Vascular invasion

References

  1. Goldhirsch A, Wood W, Gelber R, Coates A, Thurlimann B, Senn HJ. Progress and promise: highlights of the international expert consensus on the primary therapy of early breast cancer 2007. Ann Oncol. 2007;18:1133–44.

    Article  PubMed  CAS  Google Scholar 

  2. Goldhirsch A, Glick JH, Gelber RD, Coats AS, Thurlimann B, Senn HJ. Meeting highlights: international expert consensus on the primary therapy of early breast cancer 2005. Ann Oncol. 2005;16:1569–83.

    Article  PubMed  CAS  Google Scholar 

  3. Carlson RW, Brown E, Burstein HJ, Gradishar WJ, Hudis CA, Loprinzi C, Mamounas EP, Perez EA, Pritchard K, Ravdin P, Recht A, Somlo G, Theriault RL, Winer EP, Wolff AC. National Comprehensive Cancer Network: NCCN Task Force Report: Adjuvant Therapy for Breast Cancer. J Natl Compr Canc Netw. 2006;4[Suppl 1]:S1-26.

    Google Scholar 

  4. Sobin LH, Wittekind C, editors. TNM Classification of malignant tumours. 6th edn. New York: Wiley; 2002.

  5. The Japanese Breast Cancer Society. General rules for clinical and pathological recording of breast cancer, 15th edn. Tokyo: Kanehara Shuppan; 2004.

  6. Fukutomi T. Manual for management of breast cancer (in Japanese). Tokyo: Medical View; 1996.

  7. Lyman GH, Giuliano AE, Somerfield MR, Benson AB 3rd, Bodurka DC, Burstein HJ, Cochran AJ, Cody HS 3rd, Edge SB, Galper S, Hayman JA, Kim TY, Perkins CL, Podoloff DA, Sivasubramaniam VH, Turner RR, Wahl R, Weaver DL, Wolff AC, Winer EP. American Society of Clinical Oncology guideline recommendations for sentinel lymph node biopsy in early-stage breast cancer. J Clin Oncol. 2005;23:7703–20.

    Article  PubMed  Google Scholar 

  8. Early Breast Cancer Trialists’ Collaborative Group. Tamoxifen for early breast cancer: an overview of the randomized trials. Lancet. 1998;351:1451–87.

    Article  Google Scholar 

  9. Watanabe T, Sonoo H. Endocrine options for breast cancer treatment: looking beyond tamoxifen. Breast Cancer. 2000;7:345–9.

    Article  PubMed  CAS  Google Scholar 

  10. Umemura S, Kurosumi M, Moriya T, Oyama T, Arihiro K, Yamashita H, Umekita Y, Komoike Y, Shimizu C, Fukushima H, Kajiwara H, Akiyama F. Immunohistochemical evaluation for hormone receptors in breast cancer: a practically useful evaluation system and handling protocol. Breast Cancer. 2006;13:232–5.

    Article  PubMed  Google Scholar 

  11. Allred DC, Harvey JM, Berardo M, Clark GM. Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol. 1998;11:155–68.

    PubMed  CAS  Google Scholar 

  12. Harvey JM, Clark GM, Osborne CK, Allred DC. Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol. 1999;17:1474–81.

    PubMed  CAS  Google Scholar 

  13. Ellis MJ, Coop A, Singh B, Mauriac L, Llombert-Cussac A, Janicke F, Miller WR, Evans DB, Dugan M, Brady C, Quebe-Fehling E, Borgs M. Letrozole is more effective neoadjuvant endocrine therapy than tamoxifen for ErbB-1- and/or ErbB-2-positive, estrogen receptor-positive primary breast cancer: evidence from a phase III randomized trial. J Clin Oncol. 2001;19:3808–16.

    PubMed  CAS  Google Scholar 

  14. Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991;19:403–10.

    Article  PubMed  CAS  Google Scholar 

  15. Tsuda H, Akiyama F, Kurosumi M, Sakamoto G, Watanabe T. Establishment of histological criteria for high-risk node-negative breast carcinoma for a multi-institutional randomized clinical trial of adjuvant therapy. Japan National Surgical Adjuvant Study of Breast Cancer (NSAS-BC) Pathology Section. Jpn J Clin Oncol. 1998;28:486–91.

    Article  PubMed  CAS  Google Scholar 

  16. Kouno T, Shimizu C, Watanabe T, Tsuda H, Akiyama F, Kurosumi M, Sakamoto G. A reliable nuclear grading system for primary breast cancer for selecting high risk invasive ductal carcinoma among node negative patients. Proc Am Soc Clin Oncol. 2003;39:113.

    Google Scholar 

  17. Tsuda H. HER-2 (c-erbB-2) test update: present status and problems. Breast Cancer. 2006;13:236–48.

    Article  PubMed  Google Scholar 

  18. Klapper LN, Kirschbaum MH, Sela M, Yarden Y. Biochemical and clinical implications of the ErbB/HER signaling network of growth factor receptors. Adv Cancer Res. 2000;77:25–79.

    PubMed  CAS  Google Scholar 

  19. Ellis IO, Bartlett J, Dowsett M, Humphreys S, Jasani B, Miller K, Pinder SE, Rhodes A, Walker R. Updated recommendations for HER2 testing in the UK. J Clin Pathol. 2004;57:233–7.

    Article  PubMed  CAS  Google Scholar 

  20. Carlson RW, Moench SJ, Hammond ME, Perez EA, Burstein HJ, Allred DC, Vogel CL, Goldstein LJ, Somlo G, Gradishar WJ, Hudis CA, Jahanzeb M, Stark A, Wolff AC, Press MF, Winer EP, Paik S, Ljung BM. NCCN HER2 Testing in Breast Cancer Task Force: HER2 testing in breast cancer: NCCN Task Force report and recommendations. J Natl Compr Canc Netw. 2006;4[Suppl 3]:S1–22.

    Google Scholar 

  21. Ross JS, Fletcher JA. HER-2/neu (c-erb-B2) gene and protein in breast cancer. Am J Clin Pathol. 1999;112:S53–67.

    PubMed  CAS  Google Scholar 

  22. Paik S, Bryant J, Tan-Chiu E, Yothers G, Park C, Wickerham DL, Wolmark N. HER2 and choice of adjuvant chemotherapy for invasive breast cancer: National Surgical Adjuvant Breast and Bowel Project Protocol B-15. J Natl Cancer Inst. 2000;92:1991–8.

    Article  PubMed  CAS  Google Scholar 

  23. Toi M, Nakamura S, Kuroi K, Iwata H, Ohno S, Masuda N, Kusama M, Yamazaki K, Hisamatsu K, Sato Y, Kashiwaba M, Kaise H, Kurosumi M, Tsuda H, Akiyama F, Ohashi Y, Takatsuka Y. For Japan Breast Cancer Research Group (JBCRG): Phase II study of preoperative sequential FEC and docetaxel predicts of pathological response and disease free survival. Breast Cancer Res Treat. 2007. doi:10.1007/s10549-007-9744-z

  24. Hayes DF, Thor AD, Dressler LG, Weaver D, Edgerton S, Cowan D, Broadwater G, Goldstein LJ, Martino S, Ingle JN, Henderson IC, Norton L, Winer EP, Hudis CA, Ellis MJ, Berry DA. Cancer, Leukemia Group B (CALGB) Investigators: HER2 and response to paclitaxel in node-positive breast cancer. N Engl J Med. 2007;357:1496–506.

    Article  PubMed  CAS  Google Scholar 

  25. Yoshimoto M. Time-dependent interrelationships between pathological peognostic factors, relapse rate in breast cancer patients (in Japanese). Nippon Geka Gakkai Zasshi. 1993;94:1131–43.

    PubMed  CAS  Google Scholar 

  26. Vleugel MM, Bos R, van der Groep P, Greijer AE, Shvarts A, Stel HV, van der Wall E, van Diest PJ. Lack of lymphangiogenesis during breast carcinogenesis. J Clin Pathol. 2004;57:746–51.

    Article  PubMed  CAS  Google Scholar 

  27. Mohammed RA, Green A, El-Shikh S, Paish EC, Ellis IO, Martin SG. Prognostic significance of vascular endothelial cell growth factors -A, -C and -D in breast cancer and their relationship with angio- and lymphangiogenesis. Br J Cancer. 2007;96:1092–100.

    Article  PubMed  CAS  Google Scholar 

  28. Arnaout-Alkarain A, Kahn HJ, Narod SA, Sun PA, Marks AN. Significance of lymph vessel invasion identified by the endothelial lymphatic marker D2–40 in node negative breast cancer. Mod Pathol. 2007;20:183–91.

    Article  PubMed  CAS  Google Scholar 

  29. Mook S, Van’t Veer LJ, Rutgers EJ, Piccart-Gebhart MJ, Cardoso F. Individualization of therapy using Mammaprint: from development to the MINDACT Trial. Cancer Genomics Proteomics. 2007;4:147–55.

    PubMed  CAS  Google Scholar 

  30. Paik S, Tang G, Shak S, Kim C, Baker J, Kim W, Cronin M, Baehner FL, Watson D, Bryant J, Costantino JP, Geyer CE Jr, Wickerham DL, Wolmark N. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol. 2006;24:3726–34.

    Article  PubMed  CAS  Google Scholar 

  31. Kaklamani V. A genetic signature can predict prognosis and response to therapy in breast cancer: Oncotype DX. Expert Rev Mol Diagn. 2006;6:803–9.

    Article  PubMed  CAS  Google Scholar 

  32. Inazawa J, Inoue J, Imoto I. Comparative genomic hybridization (CGH)-arrays pave the way for identification of novel cancer-related genes. Cancer Sci. 2004;95:559–63.

    Article  PubMed  CAS  Google Scholar 

  33. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, Borresen-Dale AL. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98:10869–74.

    Article  PubMed  CAS  Google Scholar 

  34. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lonning PE, Brown PO, Borresen-Dale AL, Botstein D. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA. 2003;100:8418–23.

    Article  PubMed  CAS  Google Scholar 

  35. Turner NC, Reis-Filho JS. Basal-like breast cancer and the BRCA1 phenotype. Oncogene. 2006;25:5846–53.

    Article  PubMed  CAS  Google Scholar 

  36. Tsuda H, Takarabe T, Hasegawa F, Fukutomi T, Hirohashi S. Large, central acellular zones indicating myoepithelial tumor differentiation in high-grade invasive ductal carcinomas as markers of predisposition to lung and brain metastases. Am J Surg Pathol. 2000;24:197–202.

    Article  PubMed  CAS  Google Scholar 

  37. Tsuda H, Tani Y, Weisenberger J, Kitada S, Hasegawa T, Murata T, Tamai S, Hirohashi S, Matsubara O, Natori T. Frequent KIT and epidermal growth factor receptor overexpressions in undifferentiated-type breast carcinomas with ‘stem-cell-like’ features. Cancer Sci. 2005;96:333–9.

    Article  PubMed  CAS  Google Scholar 

  38. Rakha EA, El-Sayed ME, Green AR, Paish EC, Lee AH, Ellis IO. Breast carcinoma with basal differentiation: a proposal for pathology definition based on basal cytokeratin expression. Histopathology. 2007;50:434–8.

    Article  PubMed  CAS  Google Scholar 

  39. Tsuda H, Takarabe T, Akashi-Tanaka S, Fukutomi T, Nanasawa T, Watanabe T. Evaluation of histopathological criteria for identifying node-negative breast cancer with high risk of early recurrence in the NSAS-BC protocol study. Breast Cancer. 2000;7:201–9.

    PubMed  CAS  Google Scholar 

  40. Fulford LG, Reis-Filho JS, Ryder K, Jones C, Gillett CE, Hanby A, Easton D, Lakhani SR. Basal-like grade III invasive ductal carcinoma of the breast: patterns of metastasis and long-term survival. Breast Cancer Res. 2007;9:R4.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Cancer Research (16–6) from the Ministry of Health, Labor, and Welfare, and by a Grant-in-Aid from the Foundation for the Promotion of Defense Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Tsuda.

Additional information

This article is based on a presentation delivered at Presidential Symposium 1, “Breast cancer: individualized diagnosis for tailored treatment,” held on 29 June 2007 at the 15th Annual Meeting of the Japanese Breast Cancer Society in Yokohama.

About this article

Cite this article

Tsuda, H. Individualization of breast cancer based on histopathological features and molecular alterations. Breast Cancer 15, 121–132 (2008). https://doi.org/10.1007/s12282-008-0032-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-008-0032-5

Keywords

Navigation