Skip to main content
Log in

Gamma-glutamyltransferase of Helicobacter pylori alters the proliferation, migration, and pluripotency of mesenchymal stem cells by affecting metabolism and methylation status

  • Microbial Pathogenesis and Host-Microbe Interaction
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Virulence factor gamma-glutamyltransferase (GGT) of H. pylori consumes glutamine (Gln) in the stomach to decrease the tricarboxylic acid metabolite alpha-ketoglutarate (α-kg) and alter the downstream regulation of α-kg as well as cellular biological characteristics. Our previous research indicated that under H. pylori infection, mesenchymal stem cells (MSCs) migrated to the stomach and participated in gastric cancer (GC) development either by differentiating into epithelial cells or promoting angiogenesis. However, how MSCs themselves participate in H. pylori-indicated GC remains unclear. Therefore, a GGT knockout H. pylori strain (Hp-KS-1) was constructed, and downstream histone H3K9 and H3K27 methylation and the PI3K/AKT signaling pathway of α-kg were detected using Western blotting. The biological characteristics of MSCs were also examined. An additive α-kg supplement was also added to H. pylori-treated MSCs to investigate alterations in these aspects. Compared to the control and Hp-KS-1 groups, H. pylori-treated MSCs reduced Gln and α-kg, increased H3K9me3 and H3K27me3, activated the PI3K-AKT signaling pathway, and promoted the proliferation, migration, self-renewal, and pluripotency of MSCs. The addition of α-kg rescued the H. pylori-induced alterations. Injection of MSCs to nude mice resulted in the largest tumors in the H. pylori group and significantly reduced tumor sizes in the Hp-KS-1 and α-kg groups. In summary, GGT of H. pylori affected MSCs by interfering with the metabolite α-kg to increase trimethylation of histone H3K9 and H3K27, activating the PI3K/AKT signaling pathway, and promoting proliferation, migration, self-renewal, and pluripotency in tumorigenesis, elucidating the mechanisms of MSCs in GC development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, R.T. and Eng, C.H. 2010. A metabolic (re-)balancing act. Mol. Cell 38, 481–482.

    Article  CAS  PubMed  Google Scholar 

  • Afarideh, M., Thaler, R., Khani, F., Tang, H., Jordan, K.L., Conley, S.M., Saadiq, I.M., Obeidat, Y., Pawar, A.S., Eirin, A., et al. 2021. Global epigenetic alterations of mesenchymal stem cells in obesity: the role of vitamin C reprogramming. Epigenetics 16, 705–717.

    Article  PubMed  Google Scholar 

  • Allis, C.D. and Jenuwein, T. 2016. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17, 487–500.

    Article  CAS  PubMed  Google Scholar 

  • Altman, B.J., Stine, Z.E., and Dang, C.V. 2016. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat. Rev. Cancer 16, 619–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baj, J., Brzozowska, K., Forma, A., Maani, A., Sitarz, E., and Portincasa, P. 2020a. Immunological aspects of the tumor microenvironment and epithelial-mesenchymal transition in gastric carcinogenesis. Int. J. Mol. Sci. 21, 2544.

    Article  CAS  PubMed Central  Google Scholar 

  • Baj, J., Korona-Głowniak, I., Forma, A., Maani, A., Sitarz, E., Rahnama-Hezavah, M., Radzikowska, E., and Portincasa, P. 2020b. Mechanisms of the epithelial-mesenchymal transition and tumor microenvironment in Helicobacter pylori-induced gastric cancer. Cells 9, 1055.

    Article  CAS  PubMed Central  Google Scholar 

  • Beigier-Bompadre, M., Moos, V., Belogolova, E., Allers, K., Schneider, T., Churin, Y., Ignatius, R., Meyer, T.F., and Aebischer, T. 2011. Modulation of the CD4+ T-cell response by Helicobacter pylori depends on known virulence factors and bacterial cholesterol and cholesterol α-glucoside content. J. Infect. Dis. 204, 1339–1348.

    Article  CAS  PubMed  Google Scholar 

  • Bradley, K.C., Finsterbusch, K., Schnepf, D., Crotta, S., Llorian, M., Davidson, S., Fuchs, S.Y., Staeheli, P., and Wack, A. 2019. Microbiota-driven tonic interferon signals in lung stromal cells protect from influenza virus infection. Cell Rep. 28, 245–256.

    Article  CAS  PubMed  Google Scholar 

  • Carey, B.W., Finley, L.W.S., Cross, J.R., Allis, C.D., and Thompson, C.B. 2015. Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518, 413–416.

    Article  CAS  PubMed  Google Scholar 

  • Chevalier, C., Thiberge, J.M., Ferrero, R.L., and Labigne, A. 1999. Essential role of Helicobacter pylori γ-glutamyltranspeptidase for the colonization of the gastric mucosa of mice. Mol. Microbiol. 31, 1359–1372.

    Article  CAS  PubMed  Google Scholar 

  • Chi, P., Allis, C.D., and Wang, G.G. 2010. Covalent histone modifications—miswritten, misinterpreted and mis-erased in human cancers. Nat. Rev. Cancer 10, 457–469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correa, P. and Houghton, J. 2007. Carcinogenesis of Helicobacter pylori. Gastroenterology 133, 659–672.

    Article  CAS  PubMed  Google Scholar 

  • Cruzat, V., Macedo Rogero, M., Noel Keane, K., Curi, R., and Newsholme, P. 2018. Glutamine: metabolism and immune function, supplementation and clinical translation. Nutrients 10, 1564.

    Article  PubMed Central  CAS  Google Scholar 

  • Curthoys, N.P. and Watford, M. 1995. Regulation of glutaminase activity and glutamine metabolism. Annu. Rev. Nutr. 15, 133–159.

    Article  CAS  PubMed  Google Scholar 

  • Gerhard, M., Schmees, C., Voland, P., Endres, N., Sander, M., Reindl, W., Rad, R., Oelsner, M., Decker, T., Mempel, M., et al. 2005. A secreted low-molecular-weight protein from Helicobacter pylori induces cell-cycle arrest of T cells. Gastroenterology 128, 1327–1339.

    Article  CAS  PubMed  Google Scholar 

  • Gu, H., Ji, R., Zhang, X., Wang, M., Zhu, W., Qian, H., Chen, Y., Jiang, P., and Xu, W. 2016. Exosomes derived from human mesenchymal stem cells promote gastric cancer cell growth and migration via the activation of the Akt pathway. Mol. Med. Rep. 14, 3452–3458.

    Article  CAS  PubMed  Google Scholar 

  • Guo, J., Dai, X., Laurent, B., Zheng, N., Gan, W., Zhang, J., Guo, A., Yuan, M., Liu, P., Asara, J.M., et al. 2019. Akt methylation by SETDB1 promotes Akt kinase activity and oncogenic functions. Nat. Cell Biol. 21, 226–237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha, H., Debnath, B., and Neamati, N. 2017. Role of the CXCL8-CXCR1/2 axis in cancer and inflammatory diseases. Theranostics 7, 1543–1588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, L., Wang, W., Shi, H., Jiang, C., Yao, H., Zhang, Y., Qian, W., and Lin, R. 2021. THBS4/integrin a2 axis mediates BM-MSCs to promote angiogenesis in gastric cancer associated with chronic Helicobacter pylori infection. Aging 13, 19375–19396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemming, S., Cakouros, D., Isenmann, S., Cooper, L., Menicanin, D., Zannettino, A., and Gronthos, S. 2014. EZH2 and KDM6A act as an epigenetic switch to regulate mesenchymal stem cell lineage specification. Stem Cells 32, 802–815.

    Article  CAS  PubMed  Google Scholar 

  • Hensley, C.T., Wasti, A.T., and DeBerardinis, R.J. 2013. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J. Clin. Invest. 123, 3678–3684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herlofsen, S.R., Bryne, J.C., Høiby, T., Wang, L., Issner, R., Zhang, X., Coyne, M.J., Boyle, P., Gu, H., Meza-Zepeda, L.A., et al. 2013. Genome-wide map of quantified epigenetic changes during in vitro chondrogenic differentiation of primary human mesenchymal stem cells. BMC Genomics 14, 105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houghton, J., Stoicov, C., Nomura, S., Rogers, A.B., Carlson, J., Li, H., Cai, X., Fox, J.G., Goldenring, J.R., and Wang, T.C. 2004. Gastric cancer originating from bone marrow-derived cells. Science 306, 1568–1571.

    Article  CAS  PubMed  Google Scholar 

  • Huang, W.C. and Hung, M.C. 2009. Induction of Akt activity by chemotherapy confers acquired resistance. J. Formos. Med. Assoc. 108, 180–194.

    Article  CAS  PubMed  Google Scholar 

  • Huang, B., Li, G., and Jiang, X.H. 2015. Fate determination in mesenchymal stem cells: a perspective from histone-modifying enzymes. Stem Cell Res. Ther. 6, 35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iyer, L.M., Tahiliani, M., Rao, A., and Aravind, L. 2009. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle 8, 1698–1710.

    Article  CAS  PubMed  Google Scholar 

  • Jang, M.W., Yun, S.P., Park, J.H., Ryu, J.M., Lee, J.H., and Han, H.J. 2012. Cooperation of Epac1/Rap1/Akt and PKA in prostaglandin E2-induced proliferation of human umbilical cord blood derived mesenchymal stem cells: involvement of c-Myc and VEGF expression. J. Cell. Physiol. 227, 3756–3767.

    Article  CAS  PubMed  Google Scholar 

  • Kaelin, W.G.Jr. 2011. Cancer and altered metabolism: potential importance of hypoxia-inducible factor and 2-oxoglutarate-dependent dioxygenases. Cold Spring Harb. Symp. Quant. Biol. 76, 335–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karnoub, A.E., Dash, A.B., Vo, A.P., Sullivan, A., Brooks, M.W., Bell, G.W., Richardson, A.L., Polyak, K., Tubo, R., and Weinberg, R.A. 2007. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449, 557–563.

    Article  CAS  PubMed  Google Scholar 

  • Khatoon, J., Rai, R.P., and Prasad, K.N. 2016. Role of Helicobacter pylori in gastric cancer: updates. World J. Gastrointest. Oncol. 8, 147–158.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiaris, H., Chatzistamou, I., Papavassiliou, A.G., and Schally, A.V. 2011. Growth hormone-releasing hormone: not only a neurohormone. Trends Endocrinol. Metab. 22, 311–317.

    Article  CAS  PubMed  Google Scholar 

  • Kim, K.M., Lee, S.G., Park, M.G., Song, J.Y., Kang, H.L., Lee, W.K., Cho, M.J., Rhee, K.H., Youn, H.S., and Baik, S.C. 2007. γ-Glutamyltranspeptidase of Helicobacter pylori induces mitochondria-mediated apoptosis in AGS cells. Biochem. Biophys. Res. Commun. 355, 562–567.

    Article  CAS  PubMed  Google Scholar 

  • Kouzarides, T. 2007. Chromatin modifications and their function. Cell 128, 693–705.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Guo, D., Sun, R., Chen, P., Qian, Q., and Fan, H. 2019. Methylation patterns of Lys9 and Lys27 on Histone H3 correlate with patient outcome in gastric cancer. Dig. Dis. Sci. 64, 439–446.

    Article  CAS  PubMed  Google Scholar 

  • Liang, F., Yue, J., Wang, J., Zhang, L., Fan, R., Zhang, H., and Zhang, Q. 2015. GPCR48/LGR4 promotes tumorigenesis of prostate cancer via PI3K/Akt signaling pathway. Med. Oncol. 32, 49.

    Article  PubMed  CAS  Google Scholar 

  • Liberti, M.V. and Locasale, J.W. 2016. The Warburg effect: how does it benefit cancer cells? Trends Biochem. Sci. 41, 211–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, S., He, L., and Yao, K. 2018. The antioxidative function of alpha-ketoglutarate and its applications. BioMed Res. Int. 2018, 3408467.

    PubMed  PubMed Central  Google Scholar 

  • Liu, X., Li, Z., Song, Y., Wang, R., Han, L., Wang, Q., Jiang, K., Kang, C., and Zhang, Q. 2016. AURKA induces EMT by regulating histone modification through Wnt/β-catenin and PI3K/Akt signaling pathway in gastric cancer. Oncotarget 7, 33152–33164.

    Article  PubMed  PubMed Central  Google Scholar 

  • Loenarz, C. and Schofield, C.J. 2008. Expanding chemical biology of 2-oxoglutarate oxygenases. Nat. Chem. Biol. 4, 152–156.

    Article  CAS  PubMed  Google Scholar 

  • Long, M.W., Robinson, J.A., Ashcraft, E.A., and Mann, K.G. 1995. Regulation of human bone marrow-derived osteoprogenitor cells by osteogenic growth factors. J. Clin. Invest. 95, 881–887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez, S. and Hausinger, R.P. 2015. Catalytic mechanisms of Fe(II)- and 2-oxoglutarate-dependent oxygenases. J. Biol. Chem. 290, 20702–20711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGovern, K.J., Blanchard, T.G., Gutierrez, J.A., Czinn, S.J., Krakowka, S., and Youngman, P. 2001. γ-Glutamyltransferase is a Helicobacter pylori virulence factor but is not essential for colonization. Infect. Immun. 69, 4168–4173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meier, J.L. 2013. Metabolic mechanisms of epigenetic regulation. ACS Chem. Biol. 8, 2607–2621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng, L., Shi, H., Wang, Z., Fan, M., Pang, S., and Lin, R. 2021. The gamma-glutamyltransferase gene of Helicobacter pylori can promote gastric carcinogenesis by activating Wnt signal pathway through upregulating TET1. Life Sci. 267, 118921.

    Article  CAS  PubMed  Google Scholar 

  • Nan, L.P., Wang, F., Ran, D., Zhou, S.F., Liu, Y., Zhang, Z., Huang, Z.N., Wang, J.C., Feng, X.M., and Zhang, L. 2020. Naringin alleviates H2O2-induced apoptosis via the PI3K/Akt pathway in rat nucleus pulposus-derived mesenchymal stem cells. Connect. Tissue Res. 61, 554–567.

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa, G., Kawada, K., Nakagawa, J., Toda, K., Ogawa, R., Inamoto, S., Mizuno, R., Itatani, Y., and Sakai, Y. 2019. Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression via CCR5. Cell Death Dis. 10, 264.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Numakura, S., Uozaki, H., Kikuchi, Y., Watabe, S., Togashi, A., and Watanabe, M. 2019. Mesenchymal stem cell marker expression in gastric cancer stroma. Anticancer Res. 39, 387–393.

    Article  CAS  PubMed  Google Scholar 

  • Oertli, M., Noben, M., Engler, D.B., Semper, R.P., Reuter, S., Maxeiner, J., Gerhard, M., Taube, C., and Müller, A. 2013. Helicobacter pylori γ-glutamyl transpeptidase and vacuolating cytotoxin promote gastric persistence and immune tolerance. Proc. Natl. Acad. Sci. USA 110, 3047–3052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quante, M., Tu, S.P., Tomita, H., Gonda, T., Wang, S.S., Takashi, S., Baik, G.H., Shibata, W., Diprete, B., Betz, K.S., et al. 2011. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 19, 257–272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren, J., Huang, D., Li, R., Wang, W., and Zhou, C. 2020. Control of mesenchymal stem cell biology by histone modifications. Cell Biosci. 10, 11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ricci, V., Giannouli, M., Romano, M., and Zarrilli, R. 2014. Helicobacter pylori gamma-glutamyl transpeptidase and its pathogenic role. World J. Gastroenterol. 20, 630–638.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rick, F.G., Seitz, S., Schally, A.V., Szalontay, L., Krishan, A., Datz, C., Stadlmayr, A., Buchholz, S., Block, N.L., and Hohla, F. 2012. GHRH antagonist when combined with cytotoxic agents induces S-phase arrest and additive growth inhibition of human colon cancer. Cell Cycle 11, 4203–4210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi, M., Bolz, C., Revez, J., Javed, S., El-Najjar, N., Anderl, F., Hyytiäinen, H., Vuorela, P., Gerhard, M., and Hänninen, M.L. 2012. Evidence for conserved function of γ-glutamyltranspeptidase in Helicobacter genus. PLoS ONE 7, e30543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao, L., Chen, Z., Soutto, M., Zhu, S., Lu, H., Romero-Gallo, J., Peek, R., Zhang, S., and El-Rifai, W. 2019. Helicobacter pylori-induced miR-135b-5p promotes cisplatin resistance in gastric cancer. FASEB J. 33, 264–274.

    Article  CAS  PubMed  Google Scholar 

  • Shen, X., Wu, S., Zhang, J., Li, M., Xu, F., Wang, A., Lei, Y., and Zhu, G. 2020. Wild-type IDH1 affects cell migration by modulating the PI3K/AKT/mTOR pathway in primary glioblastoma cells. Mol. Med. Rep. 22, 1949–1957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, H., Qi, C., Meng, L., Yao, H., Jiang, C., Fan, M., Zhang, Q., Hou, X., and Lin, R. 2021. Bone marrow-derived mesenchymal stem cells promote Helicobacter pylori-associated gastric cancer progression by secreting thrombospondin-2. Cell Prolif. 54, e13114.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shibayama, K., Kamachi, K., Nagata, N., Yagi, T., Nada, T., Doi, Y., Shibata, N., Yokoyama, K., Yamane, K., Kato, H., et al. 2003. A novel apoptosis-inducing protein from Helicobacter pylori. Mol. Microbiol. 47, 443–451.

    Article  CAS  PubMed  Google Scholar 

  • Shibayama, K., Wachino, J., Arakawa, Y., Saidijam, M., Rutherford, N.G., and Henderson, P.J.F. 2007. Metabolism of glutamine and glutathione via gamma-glutamyltranspeptidase and glutamate transport in Helicobacter pylori: possible significance in the pathophysiology of the organism. Mol. Microbiol. 64, 396–406.

    Article  CAS  PubMed  Google Scholar 

  • Song, Y., Li, Z.X., Liu, X., Wang, R., Li, L.W., and Zhang, Q. 2017. The Wnt/β-catenin and PI3K/Akt signaling pathways promote EMT in gastric cancer by epigenetic regulation via H3 lysine 27 acetylation. Tumour Biol. 39, 1–10. doi: https://doi.org/10.1177/1010428317712617.

    CAS  Google Scholar 

  • Straussman, R., Morikawa, T., Shee, K., Barzily-Rokni, M., Qian, Z.R., Du, J., Davis, A., Mongare, M.M., Gould, J., Frederick, D.T., et al. 2012. Tumor microenvironment induces innate RAF-inhibitor resistance through HGF secretion. Nature 487, 500–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, L., Huang, C., Zhu, M., Guo, S., Gao, Q., Wang, Q., Chen, B., Li, R., Zhao, Y., Wang, M., et al. 2020. Gastric cancer mesenchymal stem cells regulate PD-L1-CTCF enhancing cancer stem cell-like properties and tumorigenesis. Theranostics 10, 11950–11962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, L., Wang, Q., Chen, B., Zhao, Y., Shen, B., Wang, H., Xu, J., Zhu, M., Zhao, X., Xu, C., et al. 2018. Gastric cancer mesenchymal stem cells derived IL-8 induces PD-L1 expression in gastric cancer cells via STAT3/mTOR-c-Myc signal axis. Cell Death Dis. 9, 928.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsukada, Y., Fang, J., Erdjument-Bromage, H., Warren, M.E., Borchers, C.H., Tempst, P., and Zhang, Y. 2006. Histone demethylation by a family of JmjC domain-containing proteins. Nature 439, 811–816.

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela, M., Bravo, D., Canales, J., Sanhueza, C., Díaz, N., Almarza, O., Toledo, H., and Quest, A.F.G. 2013. Helicobacter pylori-induced loss of survivin and gastric cell viability is attributable to secreted bacterial gamma-glutamyl transpeptidase activity. J. Infect. Dis. 208, 1131–1141.

    Article  CAS  PubMed  Google Scholar 

  • Wang, G.G. and Allis, C.D. 2009. “Misinterpretation” of a histone mark is linked to aberrant stem cells and cancer development. Cell Cycle 8, 1982–1983.

    CAS  PubMed  Google Scholar 

  • Wang, L., Bo, X., Yi, X., Xiao, X., Zheng, Q., Ma, L., and Li, B. 2020. Exosome-transferred LINC01559 promotes the progression of gastric cancer via PI3K/AKT signaling pathway. Cell Death Dis. 11, 723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Hevi, S., Kurash, J.K., Lei, H., Gay, F., Bajko, J., Su, H., Sun, W., Chang, H., Xu, G., et al. 2009. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat. Genet. 41, 125–129.

    Article  CAS  PubMed  Google Scholar 

  • Whetstine, J.R., Nottke, A., Lan, F., Huarte, M., Smolikov, S., Chen, Z., Spooner, E., Li, E., Zhang, G., Colaiacovo, M., et al. 2006. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125, 467–481.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, M., Yang, H., Xu, W., Ma, S., Lin, H., Zhu, H., Liu, L., Liu, Y., Yang, C., Xu, Y., et al. 2012. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 26, 1326–1338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, D., Zeng, L., Yao, K., Kong, X., Wu, G., and Yin, Y. 2016. The glutamine-alpha-ketoglutarate (AKG) metabolism and its nutritional implications. Amino Acids 48, 2067–2080.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, X.Q., Wang, J., and Chen, S.Y. 2017. Methylation modification in gastric cancer and approaches to targeted epigenetic therapy (Review). Int. J. Oncol. 50, 1921–1933.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, G.F., Jensen, M.V., Gray, S.M., El, K., Wang, Y., Lu, D., Becker, T.C., Campbell, J.E., and Newgard, C.B. 2021. Reductive TCA cycle metabolism fuels glutamine- and glucose-stimulated insulin secretion. Cell Metab. 33, 804–817.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Zhang, J., Zhang, N., Li, T., Zhou, X., Jia, J., Liang, Y., Sun, X., and Chen, H. 2020. The effects of platelet-rich and platelet-poor plasma on biological characteristics of BM-MSCs in vitro. Anal. Cell. Pathol. 2020, 8546231.

    Google Scholar 

  • Zheng, X.B., He, X.W., Zhang, L.J., Qin, H.B., Lin, X.T., Liu, X.H., Zhou, C., Liu, H.S., Hu, T., Cheng, H.C., et al. 2019. Bone marrow-derived CXCR4-overexpressing MSCs display increased homing to intestine and ameliorate colitis-associated tumorigenesis in mice. Gastroenterol. Rep. 7, 127–138.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of Hubei Province (No. 2017CFA061).

Author information

Authors and Affiliations

Authors

Contributions

ZW: performed project design, most of the experiments/data analysis, and wrote the manuscript; WW and HS: assisted in project design, manuscript revision and helped in experiments; LM: helped in project design and some of the experiments/data analysis, SP, XJ, and MF: helped in some of the experiments; RL: performed the project design, supervision, and manuscript revision.

Corresponding author

Correspondence to Rong Lin.

Ethics declarations

All animal experiments were conducted under the approval of the Medical Ethics Committee of Wuhan Union Hospital of Huazhong University of Science and Technology (S-028.19-12-12).

Additional information

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wang, W., Shi, H. et al. Gamma-glutamyltransferase of Helicobacter pylori alters the proliferation, migration, and pluripotency of mesenchymal stem cells by affecting metabolism and methylation status. J Microbiol. 60, 627–639 (2022). https://doi.org/10.1007/s12275-022-1575-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-022-1575-4

Keywords

Navigation