Skip to main content
Log in

Changpingibacter yushuensis gen. nov., sp. nov., isolated from fluvial sediment in Qinghai Tibet Plateau of China

  • Microbial Systematics and Evolutionary Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Two facultatively anaerobic, short rod-shaped, non-motile, Gram-stain-positive, unknown bacterial strains (JY-X040T and JY-X174) were isolated from fluvial sediments of Tongtian River in Yushu Tibetan Autonomous Prefecture, Qinghai province, China. Cells formed translucent, gray, round and convex colonies, with a diameter of less than 0.5 mm after 5 days of incubation at 30°C on brain heart infusion-5% sheep blood agar. The 16S rRNA gene sequence similarity between strain JY-X040T and Fudania jinshanensis 313T is 93.87%. In the four phylogenetic trees constructed based on the 16S rRNA gene and 423 core genes, the two isolates form an independent branch, phylogenetically closest to F. jinshanensis 313T, but could not be classified as a member of the genus Fudania or any other genus of the family Arcanobacteriaceae. The DNA G + C content of strain JY-X040T was 57.8%. Calculation results of average nucleotide identity, digital DNA-DNA hybridization value and amino acid identity between strain JY-X040T and F. jinshanensis 313T are 69.9%, 22.9%, and 64.1%. The major cellular fatty acids were C16:0 (23%) and C18:1ω9c (22%). The cell-wall peptidoglycan type was A5α (l-Lys-l-Ala-l-Lys-d-Glu). The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside and four unidentified components. The whole-cell sugars contained rhamnose and ribose. MK-10(H4) was the sole respiratory quinone. The minimum inhibitory concentration of streptomycin was 32 μg/ml. All physiological, biochemical, chemotaxonomic and genomic characteristics support that strains JY-X040T and JY-X174 represent members of a novel species in a new genus, Changpingibacter yushuensis gen. nov., sp. nov. The type strain is JY-X040T (GDMCC 1.1996T = KCTC 49514T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcock, B., Raphenya, A., Lau, T., Tsang, K., Bouchard, M., Edalatmand, A., Huynh, W., Nguyen, A., Cheng, A., Liu, S., et al. 2020. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 48, D517–D525.

    CAS  PubMed  Google Scholar 

  • Alssahen, M., Hassan, A.A., Wickhorst, J.P., Sammra, O., Lämmler, C., Glaeser, S.P., Kämpfer, P., Timke, M., Prenger-Berninghoff, E., and Abdulmawjood, A. 2020. Epidemiological analysis of Trueperella abortisuis isolated from cases of pig abortion of a single farm. Folia Microbiol. 65, 491–496.

    Article  CAS  Google Scholar 

  • An, D., Cai, S., and Dong, X. 2006. Actinomyces ruminicola sp. nov., isolated from cattle rumen. Int. J. Syst. Evol. Microbiol. 56, 2043–2048.

    Article  CAS  PubMed  Google Scholar 

  • Auch, A., von Jan, M., Klenk, H., and Göker, M. 2010. Digital DNADNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand. Genomic Sci. 2, 117–134.

    Article  PubMed  PubMed Central  Google Scholar 

  • Azuma, R., Murakami, S., Ogawa, A., Okada, Y., Miyazaki, S., and Makino, T. 2009. Arcanobacterium abortisuis sp. nov., isolated from a placenta of a sow following an abortion. Int. J. Syst. Evol. Microbiol. 59, 1469–1473.

    Article  CAS  PubMed  Google Scholar 

  • Bai, X., Zhang, W., Tang, X., Xin, Y., Xu, Y., Sun, H., Luo, X., Pu, J., Xu, J., Xiong, Y., et al. 2016. Shiga toxin-producing Escherichia coli in plateau Pika (Ochotona curzoniae) on the Qinghai-Tibetan plateau, China. Front. Microbiol. 7, 375.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bakour, S., Beye, M., Raoult, D., and Fournier, P. 2016. Description of strain FC3T as the neotype strain of Actinobaculum massiliense. Int. J. Syst. Evol. Microbiol. 66, 2702–2703.

    Article  CAS  PubMed  Google Scholar 

  • Cantarel, B.L., Coutinho, P.M., Rancurel, C., Bernard, T., Lombard, V., and Henrissat, B. 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 37, D233–D238.

    Article  CAS  PubMed  Google Scholar 

  • Cashion, P., Holder-Franklin, M.A., McCully, J., and Franklin, M. 1977. A rapid method for the base ratio determination of bacterial DNA. Anal. Biochem. 81, 461–466.

    Article  CAS  PubMed  Google Scholar 

  • Cattoir, V. 2012. Actinobaculum schaalii: review of an emerging uropathogen. J. Infect. 64, 260–267.

    Article  PubMed  Google Scholar 

  • Chen, B., Yuan, K., Chen, X., Yang, Y., Zhang, T., Wang, Y., Luan, T., Zou, S., and Li, X. 2016. Metagenomic analysis revealing Antibiotic Resistance Genes (ARGs) and their genetic compartments in the Tibetan environment. Environ. Sci. Technol. 50, 6670–6679.

    Article  CAS  PubMed  Google Scholar 

  • Chun, J., Lee, J., Jung, Y., Kim, M., Kim, S., Kim, B., and Lim, Y. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57, 2259–2261.

    Article  CAS  PubMed  Google Scholar 

  • Chun, J. and Rainey, F. 2014. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int. J. Syst. Evol. Microbiol. 64, 316–324.

    Article  PubMed  Google Scholar 

  • CLSI, Clinical and Laboratory Standards Institute. 2018. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Gow Aerobically. 11th edn, CLSI standard M07. Wayne, Pennsylvania, USA.

    Google Scholar 

  • CLSI, Clinical and Laboratory Standards Institute. 2019. Performance Standards for Antimicrobial Susceptibility Testing. 29th edn, CLSI supplement M100. Wayne, Pennsylvania, USA.

    Google Scholar 

  • Collins, M.D. and Jones, D. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol. Rev. 45, 316–354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins, M.D., Jones, D., and Schofield, G.M. 1982. Reclassification of ‘Corynebacterium haemolyticum’ (MacLean, Liebow & Rosenberg) in the genus Arcanobacterium gen.nov. as Arcanobacterium haemolyticum nom.rev., comb.nov. J. Gen. Microbiol. 128, 1279–1281.

    CAS  PubMed  Google Scholar 

  • Dong, W.L., Kong, L.C., Wang, Y., Gou, C.L., Xu, B., Ma, H.X., and Gao, Y.H. 2017. Aminoglycoside resistance of Trueperella pyogenes isolated from pigs in China. J. Vet. Med. Sci. 79, 1836–1839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du, Z.J., Miao, T.T., Lin, X.Z., Liu, Q.Q., and Chen, G.J. 2013. Flaviflexus huanghaiensis gen. nov., sp. nov., an actinobacterium of the family Actinomycetaceae. Int. J. Syst. Evol. Microbiol. 63, 1863–1867.

    Article  CAS  PubMed  Google Scholar 

  • Edgar, R.C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461.

    Article  CAS  PubMed  Google Scholar 

  • Fournier, P.E., Lagier, J.C., Dubourg, G., and Raoult, D. 2015. From culturomics to taxonomogenomics: a need to change the taxonomy of prokaryotes in clinical microbiology. Anaerobe 36, 73–78.

    Article  PubMed  Google Scholar 

  • Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galán-Relaño, Á., Gómez-Gascón, L., Luque, I., Barrero-Domínguez, B., Casamayor, A., Cardoso-Toset, F., Vela, A.I., Fernández-Garayzábal, J., and Tarradas, C. 2019. Antimicrobial susceptibility and genetic characterization of Trueperella pyogenes isolates from pigs reared under intensive and extensive farming practices. Vet. Microbiol. 232, 89–95.

    Article  PubMed  Google Scholar 

  • Galperin, M.Y., Makarova, K.S., Wolf, Y.I., and Koonin, E.V. 2015. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 43, D261–D269.

    Article  CAS  PubMed  Google Scholar 

  • Gilarranz, R., Chamizo, F., Horcajada, I., and Bordes-Benítez, A. 2016. Prosthetic joint infection caused by Trueperella bernardiae. J. Infect. Chemother. 22, 642–644.

    Article  PubMed  Google Scholar 

  • Greub, G. and Raoult, D. 2002. “Actinobaculum massiliae,” a new species causing chronic urinary tract infection. J. Clin. Microbiol. 40, 3938–3941.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guindon, S. and Gascuel, O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704.

    Article  PubMed  Google Scholar 

  • Hall, V., Collins, M.D., Hutson, R.A., Falsen, E., Inganäs, E., and Duerden, B.I. 2003. Actinobaculum urinale sp. nov., from human urine. Int. J. Syst. Evol. Microbiol. 53, 679–682.

    Article  CAS  PubMed  Google Scholar 

  • Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forslund, S.K., Cook, H., Mende, D.R., Letunic, I., Rattei, T., Jensen, L., et al. 2019. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314.

    Article  CAS  PubMed  Google Scholar 

  • Jin, L., Ko, S., Lee, H.G., Kim, B.H., Kim, H.S., Ahn, C.Y., and Oh, H.M. 2014. Flaviflexus salsibiostraticola sp. nov., an actinobacterium isolated from a biofilm reactor. Int. J. Syst. Evol. Microbiol. 64, 3293–3296.

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa, M., Sato, Y., and Morishima, K. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.

    Article  CAS  PubMed  Google Scholar 

  • Kolaczkowski, B. and Thornton, J. 2004. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature 431, 980–984.

    Article  CAS  PubMed  Google Scholar 

  • Konstantinidis, K., Rosselló-Móra, R., and Amann, R. 2017. Uncultivated microbes in need of their own taxonomy. ISME J. 11, 2399–2406.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwiecień, E., Stefańska, I., Chrobak-Chmiel, D., Salamaszyńska-Guz, A., and Rzewuska, M. 2020. New determinants of aminoglycoside resistance and their association with the class 1 integron gene cassettes in Trueperella pyogenes. Int. J. Mol. Sci. 21, 4230.

    Article  PubMed Central  Google Scholar 

  • Lane, D.J. 1991. 16S/23S rRNA sequencing. In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. John Wiley and Sons, New York, USA.

    Google Scholar 

  • Lawson, P.A., Falsen, E., Akervall, E., Vandamme, P., and Collins, M.D. 1997. Characterization of some Actinomyces-like isolates from human clinical specimens: reclassification of Actinomyces suis (Soltys and Spratling) as Actinobaculum suis comb. nov. and description of Actinobaculum schaalii sp. nov. Int. J. Syst. Bacteriol. 47, 899–903.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J.Y., Kang, W., Kim, P.S., Lee, S.Y., Shin, N.R., Sung, H., Lee, J.Y., Yun, J.H., Jeong, Y.S., Han, J.E., et al. 2020. Flaviflexus ciconiae sp. nov., isolated from the faeces of the oriental stork. Int. J. Syst. Evol. Microbiol. 70, 5439–5444.

    Article  CAS  PubMed  Google Scholar 

  • Lehnen, A., Busse, H.J., Frölich, K., Krasinska, M., Kämpfer, P., and Speck, S. 2006. Arcanobacterium bialowiezense sp. nov. and Arcanobacterium bonasi sp. nov., isolated from the prepuce of European bison bulls (Bison bonasus) suffering from balanoposthitis, and emended description of the genus Arcanobacterium Collins et al. 1983. Int. J. Syst. Evol. Microbiol. 56, 861–866.

    Article  CAS  PubMed  Google Scholar 

  • Linder, R. 1997. Rhodococcus equi and Arcanobacterium haemolyticum: two “coryneform” bacteria increasingly recognized as agents of human infection. Emerg. Infect. Dis. 3, 145–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lotte, R., Lotte, L., and Ruimy, R. 2016. Actinotignum schaalii (formerly Actinobaculum schaalii): a newly recognized pathogen-review of the literature. Clin. Microbiol. Infect. 22, 28–36.

    Article  PubMed  Google Scholar 

  • Mackenzie, A., Fuite, L.A., Chan, F.T., King, J., Allen, U., MacDonald, N., and Diaz-Mitoma, F. 1995. Incidence and pathogenicity of Arcanobacterium haemolyticum during a 2-year study in Ottawa. Clin. Infect. Dis. 21, 177–181.

    Article  CAS  PubMed  Google Scholar 

  • Maclean, P.D., Liebow, A.A., and Rosenberg, A.A. 1946. A hemolytic corynebacterium resembling Corynebacterium ovis and Corynebacterium pyogenes in man. J. Infect. Dis. 79, 69–90.

    Article  CAS  PubMed  Google Scholar 

  • Miller, R.A., Brancato, F., and Holmes, K.K. 1986. Corynebacterium hemolyticum as a cause of pharyngitis and scarlatiniform rash in young adults. Ann. Intern. Med. 105, 867–872.

    Article  CAS  PubMed  Google Scholar 

  • Nouioui, I., Carro, L., García-López, M., Meier-Kolthoff, J., Woyke, T., Kyrpides, N., Pukall, R., Klenk, H., Goodfellow, M., and Göker, M. 2018. Genome-based taxonomic classification of the phylum Actinobacteria. Front. Microbiol. 9, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oren, A. and Garrity, G. 2020. Notification that new names of prokaryotes, new combinations, and new taxonomic opinions. Int. J. Syst. Evol. Microbiol. 70, 2967–2971.

    Article  PubMed  Google Scholar 

  • Price, M., Dehal, P., and Arkin, A. 2009. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin, Q.L., Xie, B.B., Zhang, X.Y., Chen, X.L., Zhou, B.C., Zhou, J., Oren, A., and Zhang, Y.Z. 2014. A proposed genus boundary for the prokaryotes based on genomic insights. J. Bacteriol. 196, 2210–2215.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-R, L.M. and Konstantinidis, K.T. 2014. Bypassing cultivation to identify bacterial species. Microbe 9, 111–118.

    Google Scholar 

  • Rzewuska, M., Kwiecień, E., Chrobak-Chmiel, D., Kizerwetter-Świda, M., Stefańska, I., and Gieryńska, M. 2019. Pathogenicity and virulence of Trueperella pyogenes: a review. Int. J. Mol. Sci. 20, 2737.

    Article  CAS  PubMed Central  Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Salam, N., Jiao, J.Y., Zhang, X.T., and Li, W.J. 2020. Update on the classification of higher ranks in the phylum Actinobacteria. Int. J. Syst. Evol. Microbiol. 70, 1331–1355.

    Article  CAS  PubMed  Google Scholar 

  • Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., Newark, Delaware, USA.

    Google Scholar 

  • Schleifer, K.H. 1985. 5 Analysis of the chemical composition and primary structure of murein. Methods Microbiol. 18, 123–156.

    Article  CAS  Google Scholar 

  • Schumann, P. 2011. Peptidoglycan structure. Methods Microbiol. 38, 101–129.

    Article  CAS  Google Scholar 

  • van der Beek, S., Zorzoli, A., Çanak, E., Chapman, R., Lucas, K., Meyer, B.H., Evangelopoulos, D., de Carvalho, L.P.S., Boons, G.J., Dorfmueller, H.C., et al. 2019. Streptococcal dTDP-L-rhamnose biosynthesis enzymes: functional characterization and lead compound identification. Mol. Microbiol. 111, 951–964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ventosa, A., Marquez, M.C., Kocur, M., and Tindall, B.J. 1993. Comparative study of “Micrococcus sp.” strains CCM 168 and CCM 1405 and members of the genus Salinicoccus. Int. J. Syst. Bacteriol. 43, 245–248.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Yang, J., Lu, S., Lai, X.H., Jin, D., Pu, J., Zhang, G., Huang, Y., Zhu, W., Wu, X., et al. 2018. Nocardioides houyundeii sp. nov., isolated from Tibetan antelope faeces. Int. J. Syst. Evol. Microbiol. 68, 3874–3880.

    Article  CAS  PubMed  Google Scholar 

  • Wyatt, A.W., Mo, F., Wang, Y., and Collins, C.C. 2013. The diverse heterogeneity of molecular alterations in prostate cancer identified through next-generation sequencing. Asian J. Androl. 15, 301–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, Z., Masuda, Y., Hayakawa, C., Ushijima, N., Kawano, K., Shiratori, Y., Senoo, K., and Itoh, H. 2020. Description of three novel members in the family Geobacteraceae, Oryzomonas japonicum gen. nov., sp. nov., Oryzomonas sagensis sp. nov., and Oryzomonas ruber sp. nov. Microorganisms 8, 634.

    Article  CAS  PubMed Central  Google Scholar 

  • Yassin, A.F., Hupfer, H., Siering, C., and Schumann, P. 2011. Comparative chemotaxonomic and phylogenetic studies on the genus Arcanobacterium Collins et al. 1982 emend. Lehnen et al. 2006: proposal for Trueperella gen. nov. and emended description of the genus Arcanobacterium. Int. J. Syst. Evol. Microbiol. 61, 1265–1274.

    Article  CAS  PubMed  Google Scholar 

  • Yassin, A., Spröer, C., Pukall, R., Sylvester, M., Siering, C., and Schumann, P. 2015. Dissection of the genus Actinobaculum: Reclassification of Actinobaculum schaalii Lawson et al. 1997 and Actinobaculum urinale Hall et al. 2003 as Actinotignum schaalii gen. nov., comb. nov. and Actinotignum urinale comb. nov., description of Actinotignum sanguinis sp. nov. and emended descriptions of the genus Actinobaculum and Actinobaculum suis; and re-examination of the culture deposited as Actinobaculum massiliense CCUG 47753T (= DSM 19118T), revealing that it does not represent a strain of this species. Int. J. Syst. Evol. Microbiol. 65, 615–624.

    Article  CAS  PubMed  Google Scholar 

  • Zerbino, D.R. and Birney, E. 2008. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, W., Yang, J., Lu, S., Lai, X.H., Jin, D., Pu, J., Wang, X., Huang, Y., Zhang, S., Huang, Y., et al. 2019. Fudania jinshanensis gen. nov., sp. nov., isolated from faeces of the Tibetan antelope (Pantholops hodgsonii) in China. Int. J. Syst. Evol. Microbiol. 69, 2942–2947.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Key R&D Program of China (2019YFC1200501 and 2019YFC1200505) and Research Units of Discovery of Unknown Bacteria and Function (2018RU010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Xu.

Ethics declarations

Conflicts of Interest The authors declare that there are no conflicts of interest.

Ethical Statements The ethical practice was approved by Ethical Committee of the National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (# ICDC-2016004).

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, Y., Zhang, S., Yang, J. et al. Changpingibacter yushuensis gen. nov., sp. nov., isolated from fluvial sediment in Qinghai Tibet Plateau of China. J Microbiol. 60, 147–155 (2022). https://doi.org/10.1007/s12275-022-1199-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-022-1199-8

Keywords

Navigation