Skip to main content
Log in

Exopolymeric substances (EPS) from Salmonella enterica: polymers, proteins and their interactions with plants and abiotic surfaces

  • Minireview
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

When Salmonella enterica is not in a planktonic state, it persists in organised communities encased in extracellular polymeric substances (EPS), defined as biofilms. Environmental conditions ultimately dictate the key properties of the biofilms such as porosity, density, water content, charge, sorption and ion exchange properties, hydrophobicity and mechanical stability. S. enterica has been extensively studied due to its ability to infect the gastrointestinal environment. However, only during the last decades studies on its persistence and replication in soil, plant and abiotic surfaces have been proposed. S. enterica is an environmental bacterium able to effectively persist outside the human host. It does so by using EPS as tools to cope with environmental fluctuations. We therefore address this mini-review to classify those EPS that are produced by Salmonella with focus on the environment (plant, soil, and abiotic surfaces) by using a classification of EPS proposed by Flemming and collaborators in 2007. The EPS are therefore classified as structural, sorptive, surface-active, active, and informative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, I., Rouf, S., Sun, L., Cimdins, A., Shafeeq, S., Le Guyon, S., Schottkowski, M., Rhen, M., and Römling, U. 2016. BcsZ inhibits biofilm phenotypes and promotes virulence by blocking cellulose production in Salmonella enterica serovar Typhimurium. Microb. Cell Fact. 15, 1–15.

    Article  CAS  Google Scholar 

  • Amarasinghe, J.J., D’Hondt, R.E., Waters, C.M., and Mantis, N.J. 2013. Exposure of Salmonella enterica serovar Typhimurium to a protective monoclonal IgA triggers exopolysaccharide production via a diguanylate cyclase-dependent pathway. Infect. Immun. 81, 653–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Austin, J.W., Sanders, G., Kay, W.W., and Collinson, S.K. 1998. Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation. FEMS Microbiol. Lett. 162, 295–301.

    Article  CAS  PubMed  Google Scholar 

  • Barak, J.D., Jahn, C.E., Gibson, D.L., and Charkowski, A.O. 2007. The role of cellulose and O-antigen capsule in the colonization of plants by Salmonella enterica. Mol. Plant Microbe Interact. 20, 1083–1091.

    Article  CAS  PubMed  Google Scholar 

  • Barnhart, M.M. and Chapman, M.R. 2006. Curli biogenesis and function. Annu. Rev. Microbiol. 1, 131.

    Article  CAS  Google Scholar 

  • Brandl, M.T., Carter, M.Q., Parker, C.T., Chapman, M.R., Huynh, S., and Zhou, Y. 2011. Salmonella biofilm formation on Aspergillus niger involves cellulose--chitin interactions. PLoS One 6, e25553.

    Article  CAS  Google Scholar 

  • Brenner, F.W., Villar, R.G., Angulo, F.J., Tauxe, R., and Swaminathan, B. 2000. Salmonella nomenclature. J. Clin. Microbiol. 38, 2465–2467.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Callahan, M.T., Micallef, S.A., and Buchanan, R.L. 2017. Soil type, soil moisture, and field slope influence the horizontal movement of Salmonella enterica and Citrobacter freundii from floodwater through soil. J. Food Prot. 80, 189–197.

    Article  CAS  PubMed  Google Scholar 

  • Castelijn, G.A.A., van der Veen, S., Zwietering, M.H., Moezelaar, R., and Abee, T. 2012. Diversity in biofilm formation and production of curli fimbriae and cellulose of Salmonella Typhimurium strains of different origin in high and low nutrient medium. Biofouling 28, 51–63.

    Article  CAS  PubMed  Google Scholar 

  • Choong, F.X., Back, M., Fahlen, S., Johansson, L.B.G., Melican, K., Rhen, M., Nilsson, K.P.R., and Richter-Dahlfors, A. 2016. Realtime optotracing of curli and cellulose in live Salmonella biofilms using luminescent oligothiophenes. NPJ Biofilms Microbiomes 2, 16024.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cowles, K.N., Willis, D.K., Engel, T.N., Jones, J.B., and Barak, J.D. 2015. Diguanylate cyclases AdrA and STM1987 regulate Salmonella enterica exopolysaccharide production during plant colonization in an environment-dependent manner. Appl. Environ. Microbiol. 82, 1237–1248.

    Article  CAS  PubMed  Google Scholar 

  • de Moraes, M.H., Desai, P., Porwollik, S., Canals, R., Perez, D.R., Chu, W., McClelland, M., and Teplitski, M. 2017. Salmonella persistence in tomatoes requires a distinct set of metabolic functions identified by transposon insertion sequencing. Appl. Environ. Microbiol. 83, 1–18.

    Article  Google Scholar 

  • Díaz De Rienzo, M.A., Banat, I.M., Dolman, B., Winterburn, J., and Martin, P.J. 2015. Sophorolipid biosurfactants: Possible uses as antibacterial and antibiofilm agent. New Biotechnol. 32, 720–726.

    Article  CAS  Google Scholar 

  • Erickson, K.D. and Detweiler, C.S. 2006. The Rcs phosphorelay system is specific to enteric pathogens/commensals and activates ydeI, a gene important for persistent Salmonella infection of mice. Mol. Microbiol. 62, 883–894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flemming, H.C., Neu, T.R., and Wozniak, D.J. 2007. The EPS matrix: the “house of biofilm cells”. J. Bacteriol. 189, 7945–7947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson, D.L., White, A.P., Snyder, S.D., Martin, S., Heiss, C., Azadi, P., Surette, M., and Kay, W.W. 2006. Salmonella produces an O-antigen capsule regulated by AgfD and important for environmental persistence. J. Bacteriol. 188, 7722–7730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong, A.S., Bolster, C.H., Benavides, M., and Walker, S.L. 2009. Extraction and analysis of extracellular polymeric substances: Comparison of methods and extracellular polymeric substance levels in Salmonella pullorum SA 1685. Environ. Eng. Sci. 26, 1523–1532.

    Article  CAS  Google Scholar 

  • Gottesman, S., Trisler, P., and Torres-Cabassa, A. 1985. Regulation of capsular polysaccharide synthesis in Escherichia coli K-12: Characterization of three regulatory genes. J. Bacteriol. 162, 1111–1119.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu, G., Hu, J., Cevallos-Cevallos, J.M., Richardson, S.M., Bartz, J.A., and van Bruggen, A.H. 2011. Internal colonization of Salmonella enterica serovar Typhimurium in tomato plants. PLoS One 6, e27340.

    Article  CAS  Google Scholar 

  • Hassan, A.N. and Frank, J.F. 2003. Influence of surfactant hydrophobicity on the detachment of Escherichia coli O157:H7 from lettuce. Int. J. Food Microbiol. 87, 145–152.

    Article  CAS  PubMed  Google Scholar 

  • Jonas, K., Tomenius, H., Kader, A., Normark, S., Römling U., Belova L.M., and Melefors, A. 2007. Roles of curli, cellulose and BapA in Salmonella biofilm morphology studied by atomic force microscopy. BMC Microbiol. 7, 70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, K. and Bradshaw, S.B. 1996. Biofilm formation by the Enterobacteriaceae: A comparison between Salmonella enteritidis, Escherichia coli and a nitrogen fixing strain of Klebsiella pneumoniae. J. Appl. Bacteriol. 80, 458–464.

    Article  CAS  PubMed  Google Scholar 

  • Keelara, S., Thakur, S., and Patel, J. 2016. Biofilm formation by environmental isolates of Salmonella and their sensitivity to natural antimicrobials. Foodborne Pathog. Dis. 13, 509–516.

    Article  CAS  PubMed  Google Scholar 

  • Lapidot, A., Romlingm, U., and Yaron, S. 2006. Biofilm formation and the survival of Salmonella Typhimurium on parsley. Int. J. Food Microbiol. 109, 229–233.

    Article  CAS  PubMed  Google Scholar 

  • Lapidot, A. and Yaron, S. 2009. Transfer of Salmonella enterica serovar Typhimurium from contaminated irrigation water to parsley is dependent on curli and cellulose, the biofilm matrix components. J. Food Prot. 72, 618–623.

    Article  PubMed  Google Scholar 

  • Latasa, C., Garcia, B., Echeverz, M., Toledo-Arana, A., Valle, J., Campoy, S., Garcia-del Portillo, F., Solano, C., and Lasa, I. 2012. Salmonella biofilm development depends on the phosphorylation status of RcsB. J. Bacteriol. 194, 3708–3722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ledeboer, N.A. and Jones, B.D. 2005. Exopolysaccharide sugars contribute to biofilm formation by Salmonella enterica serovar Typhimurium on HEp-2 cells and chicken intestinal epithelium. J. Bacteriol. 187, 3214–3226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, A., Pi, S., Wei, W., Chen, T., Yang, J., and Ma, F. 2016. Adsorption behavior of tetracycline by extracellular polymeric substrates extracted from Klebsiella sp. J1. Environ. Sci. Pollut. Res. Int. 23, 25084–25092.

    Article  CAS  PubMed  Google Scholar 

  • Liu, B., Knirel, Y.A., Feng, L., Perepelov, A.V., Senchenkova, S.N., Reeves, P.R., and Wang, L. 2014. Structural diversity in Salmonella O antigens and its genetic basis. FEMS Microbiol. Rev. 38, 56–89.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Yu, S., Han, B., and Chen, J. 2017. Effects of benzalkonium chloride and ethanol on dual-species biofilms of Serratia liquefaciens S1 and Shewanella putrefaciens S4. Food Control. 78, 196–202.

    Article  CAS  Google Scholar 

  • Marvasi, M., Cox, C.E., Xu, Y., Noel, J.T., Giovannoni, J.J., and Teplitski, M. 2013. Differential regulation of Salmonella Typhimurium genes involved in O-antigen capsule production and their role in persistence within tomatoes. Mol. Plant Microbe Interact. 26, 793–800.

    Article  CAS  PubMed  Google Scholar 

  • Marvasi, M., de Moraes, M.H., Salas-Gonzalez, I., Porwollik, S., Farias, M., McClelland, M., and Teplitski, M. 2016. Involvement of the Rcs regulon in the persistence of Salmonella Typhimurium in tomatoes. Environ. Microbiol. Rep. 8, 928–935.

    Article  PubMed  Google Scholar 

  • Marvasi, M., Visscher, P.T., and Casillas Martinez, L. 2010. Exopolymeric substances (EPS) from Bacillus subtilis: polymers and genes encoding their synthesis. FEMS Microbiol. Lett. 313, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Mireles II, J.R., Toguchi, A., and Harshey, R.M. 2001. Salmonella enterica serovar Typhimurium swarming mutants with altered biofilm-forming abilities: Surfactin inhibits biofilm formation. J. Bacteriol. 183, 5848–5854.

    Article  Google Scholar 

  • Morikawa, M., Kagihiro, S., Haruki, M., Takano, K., Branda, S., Kolter, R., and Kanaya, S. 2006. Biofilm formation by a Bacillus subtilis strain that produces gamma-polyglutamate. Microbiology 152, 2801–2807.

    Article  CAS  PubMed  Google Scholar 

  • Oh, Y.J., Hubauer-Brenner, M., Gruber, H.J., Cui, Y., Traxler, L., Siligan, C., Park, S., and Hinterdorfer, P. 2016. Curli mediate bacterial adhesion to fibronectin via tensile multiple bonds. Sci. Rep. 6, 1–8.

    Article  CAS  Google Scholar 

  • Paytubi, S., Cansado, C., Madrid, C., and Balsalobre, C. 2017. Nutrient composition promotes switching between pellicle and bottom biofilm in Salmonella. Front Microbiol. 8, 2160.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prouty, A.M. and Gunn, J.S. 2003. Comparative analysis of Salmonella enterica serovar Typhimurium biofilm formation on gallstones and on glass. Infect. Immun. 71, 7154–7158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichhardt, C., McCrate, O.A., Zhou, X., Lee, J., Thongsomboon, W., and Cegelski, L. 2016. Influence of the amyloid dye Congo red on curli, cellulose, and the extracellular matrix in E. coli during growth and matrix purification. Annal. Bioanal. Chem. 408, 7709–7717.

    Article  CAS  Google Scholar 

  • Romaní, A.M., Fund, K., Artigas, J., Schwartz, T., Sabater, S., and Obst, U. 2008. Relevance of polymeric matrix enzymes during biofilm formation. Microb. Ecol. 56, 427–436.

    Article  CAS  PubMed  Google Scholar 

  • Römling, U., Bian, Z., Hammar, M., Sierralta, W.D., and Normark, S. 1998. Curli fibers are highly conserved between Salmonella Typhimurium and Escherichia coli with respect to operon structure and regulation. J. Bacteriol. 180, 722–731.

    PubMed  PubMed Central  Google Scholar 

  • Römling, U. and Galperin, M.Y. 2015. Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol. 23, 545–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Römling, U. and Lünsdorf, H. 2004. Characterization of cellulose produced by Salmonella enterica serovar Typhimurium. Cellulose 11, 413–418.

    Article  Google Scholar 

  • Rossi, E.M., Beilke, L., Kochhann, M., Sarzi, D.H., and Tondo, E.C. 2016. Biosurfactant produced by Salmonella Enteritidis SE86 can increase adherence and resistance to sanitizers on lettuce leaves (Lactuca sativa L., cichoraceae). Front. Microbiol. 7, 1–9.

    Google Scholar 

  • Serra, D.O., Richter, A.M., and Hengge, R. 2013. Cellulose as an architectural element in spatially structured Escherichia coli biofilms. J. Bacteriol. 195, 5540–5554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder, D.S., Gibson, D., Heiss, C., Kay, W., and Azadi, P. 2006. Structure of a capsular polysaccharide isolated from Salmonella enteritidis. Carbohydr. Res. 341, 2388–2397.

    Article  CAS  PubMed  Google Scholar 

  • Solano, C., Garcia, B., Valle, J., Berasain, C., Ghigo, J.M., Gamazo, C., and Lasa, I. 2002. Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol. Microbiol. 43, 793–808.

    Article  CAS  PubMed  Google Scholar 

  • Steenackers, H., Hermans, K., Vanderleyden, J., and De Keersmaecker, S.C.J. 2012. Salmonella biofilms: An overview on occurrence, structure, regulation and eradication. Food Res. Int. 45, 502–531.

    Article  CAS  Google Scholar 

  • Sutherland, I. 2001. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147, 3–9.

    Article  CAS  PubMed  Google Scholar 

  • Tan, S.Y.E., Chew, S.C., Tan, S.Y.Y., Givskov, M., and Yang, L. 2014. Emerging frontiers in detection and control of bacterial biofilms. Curr. Opin. Biotechnol. 26, 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Totani, T., Nishiuchi, Y., Tateishi, Y., Yoshida, Y., Kitanaka, H., Niki, M., Kaneko, Y., and Matsumoto, S. 2017. Effects of nutritional and ambient oxygen condition on biofilm formation in Mycobacterium avium subsp. hominissuis via altered glycolipid expression. Sci. Rep. 7, 41775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Gerven, N., Goyal, P., Vandenbussche, G., De Kerpel, M., Jonckheere, W., De Greve, H., and Remaut, H. 2014. Secretion and functional display of fusion proteins through the curli biogenesis pathway. Mol. Microbiol. 91, 1022–1035.

    Article  CAS  PubMed  Google Scholar 

  • Van Gerven, N., Klein, R.D., Hultgren, S.J., and Remaut, H. 2015. Bacterial amyloid formation: structural insights into curli biogensis. Trends Microbiol. 23, 693–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner, C. and Hensel, M. 2011. Adhesive mechanisms of Salmonella enterica. Adv. Exp. Med. Biol. 715, 17–34.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Dong, Y., Wang, G., Xu, X., and Zhou, G. 2016. Effect of growth media on gene expression levels in Salmonella Typhimurium biofilm formed on stainless steel surface. Food Cont. 59, 546–552.

    Article  CAS  Google Scholar 

  • Wang, H., Huang, Y., Wu, S.Y., Li, Y.Y., Ye, Y., Zheng, Y.J., and Huang, R. 2014. Extracellular DNA inhibits Salmonella enterica serovar Typhimurium and S. enterica serovar Typhi biofilm development on abiotic surfaces. Curr. Microbiol. 68, 262–268.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Shi, H., Li, Y., Shi, Z., Zhang, X., Baek, C., Mothershead, T., and Curtiss, R. 2013. A colanic acid operon deletion mutation enhances induction of early antibody responses by live attenuated Salmonella vaccine strains. Infect. Immun. 81, 3148–3162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White, A.P., Gibson, D.L., Collinson, S.K., Banser, P.A., and Kay, W.W. 2003. Extracellular polysaccharides associated with thin aggregative fimbriae of Salmonella enterica serovar Enteritidis. J. Bacteriol. 185, 5398–5407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitfield, C. 2006. Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu. Rev. Biochem. 75, 39–68.

    Article  CAS  PubMed  Google Scholar 

  • Wingender, J., Neu, T.R., and Flemming, H.C. 1999. Microbial extracellular polymeric substances: Characterization, structure, and function. Springer.

    Google Scholar 

  • Yaron, S. and Römling, U. 2014. Biofilm formation by enteric pathogens and its role in plant colonization and persistence. Microb. Biotechnol. 6, 496–516.

    Google Scholar 

  • Zahrt, T.C., Buchmeier, N., and Maloy, S. 1999. Effect of mutS and recD mutations on Salmonella virulence. Infect. Immun. 67, 6168–6172.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaragoza, W.J., Noel, J.T., and Teplitski, M. 2012. Spontaneous nonrdar mutations increase fitness of Salmonella in plants. Environ. Microbiol. Rep. 4, 453–458.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L. and Mah, T.F. 2008. Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J. Bacteriol. 190, 4447–4452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zogaj, X., Nimtz, M., Rohde, M., Bokranz, W., and Römling, U. 2001. The multicellular morphotypes of Salmonella Typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol. Microbiol. 39, 1452–1463.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Marvasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maruzani, R., Sutton, G., Nocerino, P. et al. Exopolymeric substances (EPS) from Salmonella enterica: polymers, proteins and their interactions with plants and abiotic surfaces. J Microbiol. 57, 1–8 (2019). https://doi.org/10.1007/s12275-019-8353-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-019-8353-y

Keywords

Navigation