Skip to main content
Log in

Influence of the amyloid dye Congo red on curli, cellulose, and the extracellular matrix in E. coli during growth and matrix purification

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Microbial biofilms are communities of cells characterized by a hallmark extracellular matrix (ECM) that confers functional attributes to the community, including enhanced cohesion, adherence to surfaces, and resistance to external stresses. Understanding the composition and properties of the biofilm ECM is crucial to understanding how it functions and protects cells. New methods to isolate and characterize ECM are emerging for different biofilm systems. Solid-state nuclear magnetic resonance was used to quantitatively track the isolation of the insoluble ECM from the uropathogenic Escherichia coli strain UTI89 and understand the role of Congo red in purification protocols. UTI89 assembles amyloid-integrated biofilms when grown on YESCA nutrient agar. The ECM contains curli amyloid fibers and a modified form of cellulose. Biofilms formed by UTI89 and other E. coli and Salmonella strains are often grown in the presence of Congo red to visually emphasize wrinkled agar morphologies and to score the production of ECM. Congo red is a hallmark amyloid-binding dye and binds to curli, yet also binds to cellulose. We found that growth in Congo red enabled more facile extraction of the ECM from UTI89 biofilms and facilitates isolation of cellulose from the curli mutant, UTI89ΔcsgA. Yet, Congo red has no influence on the isolation of curli from curli-producing cells that do not produce cellulose. Sodium dodecyl sulfate can remove Congo red from curli, but not from cellulose. Thus, Congo red binds strongly to cellulose and possibly weakens cellulose interactions with the cell surface, enabling more complete removal of the ECM. The use of Congo red as an extracellular matrix purification aid may be applied broadly to other organisms that assemble extracellular amyloid or cellulosic materials.

Solid-state NMR was used to quantitatively track the isolation of the insoluble amyloid-associated ECM from uropathogenic E. coli and understand the role of Congo red in purification protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004;2:95–108. doi:10.1038/nrmicro821.

    Article  CAS  Google Scholar 

  2. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15:167–93. doi:10.1128/cmr.15.2.167-193.2002.

    Article  CAS  Google Scholar 

  3. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284:1318–22.

    Article  CAS  Google Scholar 

  4. Watnick P, Kolter R. Biofilm, city of microbes. J Bacteriol. 2000;182:2675–9.

    Article  CAS  Google Scholar 

  5. Lam J, Chan R, Lam K, Costerton JW. Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect Immun. 1980;28:546–56.

    CAS  Google Scholar 

  6. Valenza G, Tappe D, Turnwald D, Frosch M, Konig C, Hebestreit H, et al. Prevalence and antimicrobial susceptibility of microorganisms isolated from sputa of patients with cystic fibrosis. J Cyst Fibros. 2008;7:123–7. doi:10.1016/j.jcf.2007.06.006.

    Article  CAS  Google Scholar 

  7. Litzler P-Y, Benard L, Barbier-Frebourg N, Vilain S, Jouenne T, Beucher E, et al. Biofilm formation on pyrolytic carbon heart valves: influence of surface free energy, roughness, and bacterial species. J Thorac Cardiovasc Surg. 2007;134:1025–32. doi:10.1016/j.jtcvs.2007.06.013.

    Article  Google Scholar 

  8. Kudinha T, Johnson JR, Andrew SD, Kong F, Anderson P, Gilbert GL. Genotypic and phenotypic characterization of Escherichia coli isolates from children with urinary tract infection and from healthy carriers. Pediatr Infect Dis J. 2013;32:543–8. doi:10.1097/INF.0b013e31828ba3f1.

    Article  Google Scholar 

  9. Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J, Hultgren SJ. Intracellular bacterial biofilm-like pods in urinary tract infections. Science. 2003;301:105–7.

    Article  CAS  Google Scholar 

  10. Anderson GG, Dodson KW, Hooton TM, Hultgren SJ. Intracellular bacterial communities of uropathogenic Escherichia coli in urinary tract pathogenesis. Trends Microbiol. 2004;12:424–30. doi:10.1016/j.tim.2004.07.005.

    Article  CAS  Google Scholar 

  11. Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8:623–33. doi:10.1038/nrmicro2415.

    CAS  Google Scholar 

  12. Flemming HC, Neu TR, Wozniak DJ. The EPS matrix: the “house of biofilm cells”. J Bacteriol. 2007;189:7945–7. doi:10.1128/JB.00858-07.

    Article  CAS  Google Scholar 

  13. McCrate OA, Zhou X, Reichhardt C, Cegelski L. Sum of the parts: composition and architecture of the bacterial extracellular matrix. J Mol Biol. 2013;425:4286–94. doi:10.1016/j.jmb.2013.06.022.

    Article  CAS  Google Scholar 

  14. Reichhardt C, Ferreira JA, Joubert LM, Clemons KV, Stevens DA, Cegelski L. Analysis of the Aspergillus fumigatus biofilm extracellular matrix by solid-state nuclear magnetic resonance spectroscopy. Eukaryot Cell. 2015;14:1064–72. doi:10.1128/EC.00050-15.

    Article  Google Scholar 

  15. Reichhardt C, Fong JC, Yildiz F, Cegelski L. Characterization of the Vibrio cholerae extracellular matrix: a top-down solid-state NMR approach. Biochim Biophys Biomembr. 2015;1848:378–83. doi:10.1016/j.bbamem.2014.05.030.

    Article  CAS  Google Scholar 

  16. Reichhardt C, Cegelski L. Solid-state NMR for bacterial biofilms. Mol Phys. 2014;112:887–94. doi:10.1080/00268976.2013.837983.

    Article  CAS  Google Scholar 

  17. Chen YY, Luo SY, Hung SC, Chan SI, Tzou DL. 13C solid-state NMR chemical shift anisotropy analysis of the anomeric carbon in carbohydrates. Carbohydr Res. 2005;340:723–9. doi:10.1016/j.carres.2005.01.018.

    Article  CAS  Google Scholar 

  18. Cegelski L, O’Connor RD, Stueber D, Singh M, Poliks B, Schaefer J. Plant cell-wall cross-links by REDOR NMR spectroscopy. J Am Chem Soc. 2010;132:16052–7.

    Article  CAS  Google Scholar 

  19. Romaniuk JA, Cegelski L. Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR. Philos Trans R Soc Lond Ser B Biol Sci. 2015. doi:10.1098/rstb.2015.0024.

    Google Scholar 

  20. Decho AW, Visscher PT, Reid PP. Production and cycling of natural microbial extracellular polymers (EPS) within a marine stromatolite. Paleogeogr Paleoclimatol Paleoecol. 2005;219:71–88.

    Article  Google Scholar 

  21. Santos SM, Carbajo JM, Quintana E, Ibarra D, Gomez N, Ladero M, et al. Characterization of purified bacterial cellulose focused on its use on paper restoration. Carbohydr Polym. 2015;116:173–81. doi:10.1016/j.carbpol.2014.03.064.

    Article  CAS  Google Scholar 

  22. Esa F, Tasirin SM, Rahman NA. Overview of bacterial cellulose production and application. Agric Agric Sci Procedia. 2014;2:113–9. doi:10.1016/j.aaspro.2014.11.017.

    Article  Google Scholar 

  23. Barnhart MM, Chapman MR. Curli biogenesis and function. Annu Rev Microbiol. 2006;60:131–47. doi:10.1146/annurev.micro.60.080805.142106.

    Article  CAS  Google Scholar 

  24. Manning M, Colon W. Structural basis of protein kinetic stability: resistance to sodium dodecyl sulfate suggests a central role for rigidity and a bias toward beta-sheet structure. Biochemistry. 2004;43:11248–54. doi:10.1021/Bi0491898.

    Article  CAS  Google Scholar 

  25. Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J, Hammar M, et al. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science. 2002;295:851–5. doi:10.1126/science.1067484.

    Article  CAS  Google Scholar 

  26. Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem. 2006;75:333–66.

    Article  CAS  Google Scholar 

  27. Cohen FE, Kelly JW. Therapeutic approaches to protein-misfolding diseases. Nature. 2003;426:905–9.

    Article  CAS  Google Scholar 

  28. Barak JD, Gorski L, Naraghi-Arani P, Charkowski AO. Salmonella enterica virulence genes are required for bacterial attachment to plant tissue. Appl Environ Microbiol. 2005;71:5685–91. doi:10.1128/AEM.71.10.5685-5691.2005.

    Article  CAS  Google Scholar 

  29. Ryu JH, Kim H, Frank JF, Beuchat LR. Attachment and biofilm formation on stainless steel by Escherichia coli O157:H7 as affected by curli production. Lett Appl Microbiol. 2004;39:359–62. doi:10.1111/j.1472-765X.2004.01591.x.

    Article  Google Scholar 

  30. Larsen P, Nielsen JL, Dueholm MS, Wetzel R, Otzen D, Nielsen PH. Amyloid adhesins are abundant in natural biofilms. Environ Microbiol. 2007;9:3077–90.

    Article  CAS  Google Scholar 

  31. Larsen P, Nielsen JL, Otzen D, Nielsen PH. Amyloid-like adhesins produced by floc-forming and filamentous bacteria in activated sludge. Appl Environ Microbiol. 2008;74:1517–26.

    Article  CAS  Google Scholar 

  32. Lim JY, Pinkner JS, Cegelski L. Community behavior and amyloid-associated phenotypes among a panel of uropathogenic E. coli. Biochem Biophys Res Commun. 2014;443:345–50. doi:10.1016/j.bbrc.2013.11.026.

    Article  CAS  Google Scholar 

  33. Wang X, Smith DR, Jones JW, Chapman MR. In vitro polymerization of a functional Escherichia coli amyloid protein. J Biol Chem. 2007;282:3713–9. doi:10.1074/jbc.M609228200.

    Article  CAS  Google Scholar 

  34. Collinson SK, Emody L, Muller KH, Trust TJ, Kay WW. Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis. J Bacteriol. 1991;173:4773–81.

    CAS  Google Scholar 

  35. Romling U, Bian Z, Hammar M, Sierralta WD, Normark S. Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J Bacteriol. 1998;180:722–31.

    CAS  Google Scholar 

  36. Bokhove M, Claessen D, de Jong W, Dijkhuizen L, Boekema EJ, Oostergetel GT. Chaplins of Streptomyces coelicolor self-assemble into two distinct functional amyloids. J Struct Biol. 2013;184:301–9. doi:10.1016/j.jsb.2013.08.013.

    Article  CAS  Google Scholar 

  37. Capstick DS, Jomaa A, Hanke C, Ortega J, Elliot MA. Dual amyloid domains promote differential functioning of the chaplin proteins during Streptomyces aerial morphogenesis. Proc Natl Acad Sci U S A. 2011;108:9821–6. doi:10.1073/pnas.1018715108.

    Article  CAS  Google Scholar 

  38. Romero D, Aguilar C, Losick R, Kolter R. Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Natl Acad Sci U S A. 2010;107:2230–4. doi:10.1073/pnas.0910560107.

    Article  CAS  Google Scholar 

  39. Dueholm MS, Petersen SV, Sonderkaer M, Larsen P, Christiansen G, Hein KL, et al. Functional amyloid in Pseudomonas. Mol Microbiol. 2010;77:1009–20. doi:10.1111/j.1365-2958.2010.07269.x.

    CAS  Google Scholar 

  40. Zogaj X, Nimtz M, Rohde M, Bokranz W, Romling U. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol. 2001;39:1452–63.

    Article  CAS  Google Scholar 

  41. Zogaj X, Bokranz W, Nimtz M, Romling U. Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from human gastrointestinal tract. Infect Immun. 2003;71:4151–8.

    Article  CAS  Google Scholar 

  42. Ude S, Arnold DL, Moon CD, Timms-Wilson T, Spiers AJ. Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Environ Microbiol. 2006;8:1997–2011.

    Article  CAS  Google Scholar 

  43. Reichhardt C, Jacobson AN, Maher MC, Uang J, McCrate OA, Eckart M, et al. Congo red interactions with curli-producing E. coli and native curli amyloid fibers. PLoS ONE. 2015;10:e0140388. doi:10.1371/journal.pone.0140388.

    Article  Google Scholar 

  44. McCrate OA, Zhou X, Cegelski L. Curcumin as an amyloid-indicator dye in E. coli. Chem Commun. 2013;49:4193–5. doi:10.1039/c2cc37792f.

    Article  CAS  Google Scholar 

  45. Garcia MC, Lee JT, Ramsook CB, Alsteens D, Dufrene YF, Lipke PN. A role for amyloid in cell aggregation and biofilm formation. PLoS ONE. 2011. doi:10.1371/journal.pone.0017632.g001.

    Google Scholar 

  46. Garcia-Sherman MC, Lundberg T, Sobonya RE, Lipke PN, Klotz SA. A unique biofilm in human deep mycoses: fungal amyloid is bound by host serum amyloid P component. NPJ Biofilms Microbiomes. 2015. doi:10.1038/npjbiofilms.2015.9.

    Google Scholar 

  47. Wood PJ, Fulcher RG. Interaction of some dyes with cereal beta-glucans. Cereal Chem. 1978;55:952–66.

    CAS  Google Scholar 

  48. Serra DO, Richter AM, Klauck G, Mika F, Hengge R. Microanatomy at cellular resolution and spatial order of physiological differentiation in a bacterial biofilm. mBio. 2013;4:e00103–13.

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support from the NIH Director’s New Innovator Award (DP2OD007488), the Stanford Terman Fellowship, and the NSF CAREER Award (1453247). C. R. was the recipient of the Althouse Family Stanford Graduate Student Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynette Cegelski.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Published in the topical collection featuring Young Investigators in Analytical and Bioanalytical Science with guest editors S. Daunert, A. Baeumner, S. Deo, J. Ruiz Encinar, and L. Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 378 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reichhardt, C., McCrate, O.A., Zhou, X. et al. Influence of the amyloid dye Congo red on curli, cellulose, and the extracellular matrix in E. coli during growth and matrix purification. Anal Bioanal Chem 408, 7709–7717 (2016). https://doi.org/10.1007/s00216-016-9868-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9868-2

Keywords

Navigation