Skip to main content
Log in

Identification of essential genes of Pseudomonas aeruginosa for its growth in airway mucus

  • Microbial Pathogenesis and Host-Microbe Interaction
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa has been identified as an important causative agent of airway infection, mainly in cystic fibrosis. This disease is characterized by defective mucociliary clearance induced in part by mucus hyper-production. Mucin is a major component of airway mucus and is heavily O-glycosylated, with a protein backbone. Airway infection is known to be established with bacterial adhesion to mucin. However, the genes involved in mucin degradation or utilization remain elusive. In this study, we sought to provide a genetic basis of P. aeruginosa airway growth by identifying those genes. First, using RNASeq analyses, we compared genome-wide expression profiles of PAO1, a prototype P. aeruginosa laboratory strain, grown in M9-mucin (M9M) and M9-glucose (M9G) media. Additionally, a PAO1 transposon (Tn) insertion mutants library was screened for mutants defective in growth in M9M medium. One mutant with a Tn insertion in the xcpU gene (PA3100) was determined to exhibit faulty growth in M9M medium. This gene contributes to the type II secretion system, suggesting that P. aeruginosa uses this secretion system to produce a number of proteins to break down and assimilate the mucin molecule. Furthermore, we screened the PAO1 genome for genes with protease activity. Of 13 mutants, one with mutation in PA3247 gene exhibited defective growth in M9M, suggesting that the PA3247-encoded protease plays a role in mucin utilization. Further mechanistic dissection of this particular process will reveal new drug targets, the inhibition of which could control recalcitrant P. aeruginosa infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bansil, R. and Turner, B.S. 2006. Mucin structure, aggregation, physiological functions and biomedical applications. Curr. Opin. Colloid Interf. Sci. 11, 164–170.

    Article  CAS  Google Scholar 

  • Bell, S.L., Xu, G.Q., and Forstner, J.F. 2001. Role of the cystine-knot motif at the C-terminus of rat mucin protein Muc2 in dimer formation and secretion. Biochem. J. 357, 203–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell, S.L., Xu, G., Khatri, I.A., Wang, R., Rahman, S., and Forstner, J.F. 2003. N-linked oligosaccharides play a role in disulphidedependent dimerization of intestinal mucin Muc2. Biochem. J. 373, 893–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg, J.O. 1981. Cellular localization of glycoside hydrolases in Bacteroides fragilis. Curr. Microbiol. 5, 13–17.

    Article  CAS  Google Scholar 

  • Bleves, S., Viarre, V., Salacha, R., Michel, G.P., Filloux, A., and Voulhoux, R. 2010. Protein secretion systems in Pseudomonas aeruginosa: a wealth of pathogenic weapons. Int. J. Med. Microbiol. 300, 534–543.

    Article  CAS  PubMed  Google Scholar 

  • Braun, P., de Groot, A., Bitter, W., and Tommassen, J. 1998. Secretion of elastinolytic enzymes and their propeptides by Pseudomonas aeruginosa. J. Bacteriol. 180, 3467–3469.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corfield, A.P., Wagner, S.A., Clamp, J.R., Kriaris, M.S., and Hoskins, L.C. 1992. Mucin degradation in the human colon: production of sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of fecal bacteria. Infect. Immun. 60, 3971–3978.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davies, J.C. 2002. Pseudomonas aeruginosa in cystic fibrosis: pathogenesis and persistence. Paediatr. Respir. Rev. 3, 128–134.

    Article  PubMed  Google Scholar 

  • Derrien, M., van Passel, M.W.J., van de Bovenkamp, J.H.B., Schipper, R., de Vos, W., and Dekker, J. 2014. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes 1, 254–268.

    Article  Google Scholar 

  • Fahy, J.V. and Dickey, B.F. 2010. Airway mucus function and dysfunction. New Engl. J. Med. 363, 2233–2247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filloux, A. and Ramos, J.L. 2014. Pseudomonas: methods and protocols. Methods in Molecular Biology. Humana Press, NY, USA.

    Book  Google Scholar 

  • Folders, J., Tommassen, J., van Loon, L.C., and Bitter, W. 2000. Identification of a chitin-binding protein secreted by Pseudomonas aeruginosa. J. Bacteriol. 182, 1257–1263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox, A., Haas, D., Reimmann, C., Heeb, S., Filloux, A., and Voulhoux, R. 2008. Emergence of secretion-defective sublines of Pseudomonas aeruginosa PAO1 resulting from spontaneous mutations in the vfr global regulatory gene. Appl. Environ. Microbiol. 74, 1902–1908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frimmersdorf, E., Horatzek, S., Pelnikevich, A., Wiehlmann, L., and Schomburg, D. 2010. How Pseudomonas aeruginosa adapts to various environments: a metabolomic approach. Environ. Microbiol. 12, 1734–1747.

    Article  CAS  PubMed  Google Scholar 

  • Fung, C., Naughton, S., Turnbull, L., Tingpej, P., Rose, B., Arthur, J., Hu, H., Harmer, C., Harbour, C., Hassett, D.J., et al. 2010. Gene expression of Pseudomonas aeruginosa in a mucin-containing synthetic growth medium mimicking cystic fibrosis lung sputum. J. Med. Microbiol. 59, 1089–1100.

    Article  CAS  PubMed  Google Scholar 

  • Galloway, D.R. 1991. Pseudomonas aeruginosa elastase and elastolysis revisited: recent developments. Mol. Microbiol. 5, 2315–2321.

    Article  CAS  PubMed  Google Scholar 

  • Gi, M., Jeong, J., Lee, K., Lee, K.M., Toyofuku, M., Yong, D.E., Yoon, S.S., and Choi, J.Y. 2014. A drug-repositioning screening identifies pentetic acid as a potential therapeutic agent for suppressing the elastase-mediated virulence of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 58, 7205–7214.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gi, M., Lee, K.M., Kim, S.C., Yoon, J.H., Yoon, S.S., and Choi, J.Y. 2015. A novel siderophore system is essential for the growth of Pseudomonas aeruginosa in airway mucus. Sci. Rep. 5, 14644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girod, S., Zahm, J.M., Plotkowski, C., Beck, G., and Puchelle, E. 1992. Role of the physiochemical properties of mucus in the protection of the respiratory epithelium. Eur. Respir. J. 5, 477–487.

    CAS  PubMed  Google Scholar 

  • Goodman, A.L., Kulasekara, B., Rietsch, A., Boyd, D., Smith, R.S., and Lory, S. 2004. A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev. Cell 7, 745–754.

    Article  CAS  PubMed  Google Scholar 

  • Henke, M.O., John, G., Rheineck, C., Chillappagari, S., Naehrlich, L., and Rubin, B.K. 2011. Serine proteases degrade airway mucins in cystic fibrosis. Infect. Immun. 79, 3438–3444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoboth, C., Hoffmann, R., Eichner, A., Henke, C., Schmoldt, S., Imhof, A., Heesemann, J., and Hogardt, M. 2009. Dynamics of adaptive microevolution of hypermutable Pseudomonas aeruginosa during chronic pulmonary infection in patients with cystic fibrosis. J. Infect. Dis. 200, 118–130.

    Article  CAS  PubMed  Google Scholar 

  • Hoskins, L.C., Agustines, M., McKee, W.B., Boulding, E.T., Kriaris, M., and Niedermeyer, G. 1985. Mucin degradation in human colon ecosystems. Isolation and properties of fecal strains that degrade abh blood group antigens and oligosaccharides from mucin glycoproteins. J. Clin. Invest. 75, 944–953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoskins, L.C. and Boulding, E.T. 1981. Mucin degradation in human colon ecosystems. Evidence for the existence and role of bacterial subpopulations producing glycosidases as extracellular enzymes. J. Clin. Invest. 67, 163–172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs, M.A., Alwood, A., Thaipisuttikul, I., Spencer, D., Haugen, E., Ernst, S., Will, O., Kaul, R., Raymond, C., Levy, R., et al. 2003. Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 100, 14339–14344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knowles, M.R. and Boucher, R.C. 2002. Mucus clearance as a primary innate defense mechanism for mammalian airways. J. Clin. Invest. 109, 571–577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuang, Z., Hao, Y., Walling, B.E., Jeffries, J.L., Ohman, D.E., and Lau, G.W. 2011. Pseudomonas aeruginosa elastase provides an escape from phagocytosis by degrading the pulmonary surfactant protein-A. PLoS One 6, e27091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liberati, N.T., Urbach, J.M., Miyata, S., Lee, D.G., Drenkard, E., Wu, G., Villanueva, J., Wei, T., and Ausubel, F.M. 2006. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc. Natl. Acad. Sci. USA 103, 2833–2838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, L., Conover, M., Lu, H., Parsek, M.R., Bayles, K., and Wozniak, D.J. 2009. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog. 5, e1000354.

    Article  PubMed  PubMed Central  Google Scholar 

  • Macfarlane, S., Quigley, M.E., Hopkins, M.J., Newton, D.F., and Macfarlane, G.T. 1998. Polysaccharide degradation by human intestinal bacteria during growth under multi-substrate limiting conditions in a three-stage continuous culture system. FEMS Microbiol. Ecol. 26, 231–243.

    Article  CAS  Google Scholar 

  • Macfarlane, S., Woodmansey, E.J., and Macfarlane, G.T. 2005. Colonization of mucin by human intestinal bacteria and establishment of biofilm communities in a two-stage continuous culture system. Appl. Environ. Microbiol. 71, 7483–7492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez, A., Ostrovsky, P., and Nunn, D.N. 1999. LipC, a second lipase of Pseudomonas aeruginosa, is LipB and Xcp dependent and is transcriptionally regulated by pilus biogenesis components. Mol. Microbiol. 34, 317–326.

    Article  PubMed  Google Scholar 

  • McConoughey, S.J., Howlin, R., Granger, J.F., Manring, M.M., Calhoun, J.H., Shirtliff, M., Kathju, S., and Stoodley, P. 2014. Biofilms in periprosthetic orthopedic infections. Future Microbiol. 9, 987–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Toole, G.A. and Kolter, R. 1998. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol. Microbiol. 28, 449–461.

    Article  PubMed  Google Scholar 

  • Oh, Y.T., Lee, K.M., Bari, W., Raskin, D.M., and Yoon, S.S. 2015. (p)ppGpp, a small nucleotide regulator, directs the metabolic fate of glucose in Vibrio cholerae. J. Biol. Chem. 290, 13178–13190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer, K.L., Mashburn, L.M., Singh, P.K., and Whiteley, M. 2005. Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology. J. Bacteriol. 187, 5267–5277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pettipher, G.L. and Latham, M.J. 1979. Production of enzymes degrading plant cell walls and fermentation of cellobiose by Ruminococcus flavefaciens in batch and continuous culture. J. Gen. Microbiol. 110, 29–38.

    Article  CAS  Google Scholar 

  • Porras-Gomez, M., Vega-Baudrit, J., and Nunez-Corrales, S. 2012. Overview of multidrug-resistant Pseudomonas aeruginosa and novel therapeutic approaches. J. Biomater. Nanobiotechnol. 3, 519–527.

    Article  CAS  Google Scholar 

  • Rabiu, B.A. and Gibson, G.R. 2002. Carbohydrates: a limit on bacterial diversity within the colon. Biol. Rev. Camb. Philos. Soc. 77, 443–453.

    Article  PubMed  Google Scholar 

  • Rogan, M.P., Geraghty, P., Greene, C.M., O'Neill, S.J., Taggart, C.C., and McElvaney, N.G. 2006. Antimicrobial proteins and polypeptides in pulmonary innate defence. Respir. Res. 7, 1–11.

    Article  Google Scholar 

  • Sabaeifard, P., Abdi-Ali, A., Soudi, M.R., and Dinarvand, R. 2014. Optimization of tetrazolium salt assay for Pseudomonas aeruginosa biofilm using microtiter plate method. J. Microbiol. Methods 105, 134–140.

    Article  CAS  PubMed  Google Scholar 

  • Senturk, S., Ulusoy, S., Bosgelmez-Tinaz, G., and Yagci, A. 2012. Quorum sensing and virulence of Pseudomonas aeruginosa during urinary tract infections. J. Infect. Dev. Ctries 6, 501–507.

    CAS  PubMed  Google Scholar 

  • Son, M.S., Matthews, W.J.Jr., Kang, Y., Nguyen, D.T., and Hoang, T.T. 2007. In vivo evidence of Pseudomonas aeruginosa nutrient acquisition and pathogenesis in the lungs of cystic fibrosis patients. Infect. Immun. 75, 5313–5324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strateva, T. and Mitov, I. 2011. Contribution of an arsenal of virulence factors to pathogenesis of Pseudomonas aeruginosa infections. Ann. Microbiol. 61, 717–732.

    Article  CAS  Google Scholar 

  • Thornton, D.J. and Sheehan, J.K. 2004. From mucins to mucus: toward a more coherent understanding of this essential barrier. Proc. Am. Thorac. Soc. 1, 54–61.

    Article  CAS  PubMed  Google Scholar 

  • Tsukatani, T., Suenaga, H., Higuchi, T., Akao, T., Ishiyama, M., Ezoe, K., and Matsumoto, K. 2008. Colorimetric cell proliferation assay for microorganisms in microtiter plate using watersoluble tetrazolium salts. J. Microbiol. Methods 75, 109–116.

    Article  CAS  PubMed  Google Scholar 

  • Turner, B.S., Bhaskar, K.R., Hadzopoulou-Cladaras, M., and LaMont, J.T. 1999. Cysteine-rich regions of pig gastric mucin contain von Willebrand factor and cystine knot domains at the carboxyl terminal. Biochim. Biophys. Acta 1447, 77–92.

    Article  CAS  PubMed  Google Scholar 

  • van’t Wout, E.F., van Schadewijk, A., van Boxtel, R., Dalton, L.E., Clarke, H.J., Tommassen, J., Marciniak, S.J., and Hiemstra, P.S. 2015. Virulence factors of Pseudomonas aeruginosa induce both the unfolded protein and integrated stress responses in airway epithelial cells. PLoS Pathog. 11, e1004946.

    Article  Google Scholar 

  • Voulhoux, R., Ball, G., Ize, B., Vasil, M.L., Lazdunski, A., Wu, L.F., and Filloux, A. 2001. Involvement of the twin-arginine translocation system in protein secretion via the type IIpathway. EMBO J. 20, 6735–6741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon, S.S., Coakley, R., Lau, G.W., Lymar, S.V., Gaston, B., Karabulut, A.C., Hennigan, R.F., Hwang, S.H., Buettner, G., Schurr, M.J., et al. 2006. Anaerobic killing of mucoid Pseudomonas aeruginosa by acidified nitrite derivatives under cystic fibrosis airway conditions. J. Clin. Invest. 116, 436–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon, S.S. and Hassett, D.J. 2004. Chronic Pseudomonas aeruginosa infection in cystic fibrosis airway disease: Metabolic changes that unravel novel drug targets. Expert. Rev. Anti. Infect. Ther. 2, 611–623.

    Article  CAS  PubMed  Google Scholar 

  • Yoon, M.Y., Lee, K.M., Park, Y., Yoon, S.S., and Kaushal, D. 2011. Contribution of cell elongation to the biofilm formation of Pseudomonas aeruginosa during anaerobic respiration. PLoS One 6, e16105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Sun Yoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alrahman, M.A., Yoon, S.S. Identification of essential genes of Pseudomonas aeruginosa for its growth in airway mucus. J Microbiol. 55, 68–74 (2017). https://doi.org/10.1007/s12275-017-6515-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-017-6515-3

Keywords

Navigation