Skip to main content
Log in

Calculibacillus koreensis gen. nov., sp. nov., an anaerobic Fe(III)-reducing bacterium isolated from sediment of mine tailings

  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

A strictly anaerobic bacterium, strain B5T, was isolated from sediment of an abandoned coal mine in Taebaek, Republic of Korea. Cells of strain B5T were non-spore-forming, straight, Gram-positive rods. The optimum pH and temperature for growth were pH 7.0 and 30°C, respectively, while the strain was able to grow within pH and temperature ranges of 5.5–7.5 and 25–45°C, respectively. Growth of strain B5T was observed at NaCl concentrations of 0 to 6.0% (w/v) with an optimum at 3.0–4.0% (w/v). The polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, an unknown phospholipid and three unknown polar lipids. Strain B5T grew anaerobically by reducing nitrate, nitrite, ferric-citrate, ferric-nitrilotriacetate, elemental sulfur, thiosulfate, and anthraquinone-2-sulfonate in the presence of proteinaceous compounds, organic acids, and carbohydrates as electron donors. The isolate was not able to grow by fermentation. Strain B5T did not grow under aerobic or microaerobic conditions. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain B5T is most closely related to the genus Tepidibacillus (T. fermentans STGHT; 96.3%) and Vulcanibacillus (V. modesticaldus BRT; 94.6%). The genomic DNA G+C content (36.9 mol%) of strain B5T was higher than those of T. fermentans STGHT (34.8 mol%) and V. modesticaldus BRT (34.5 mol%). Based on its phenotypic, chemotaxonomic, and phylogenetic properties, we describe a new species of a novel genus Calculibacillus, represented by strain B5T (=KCTC 15397T =JCM 19989T), for which we propose the name Calculibacillus koreensis gen. nov., sp. nov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aklujkar, M., Coppi, M.V., Leang, C., Kim, B.C., Chavan, M.A., Perpetua, L.A., Giloteaux, L., Liu, A., and Holmes, D.E. 2013. Proteins involved in electron transfer to Fe(III) and Mn(IV) oxides by Geobacter sulfurreducens and Geobacter uraniireducens. Microbiology 159, 515–535.

    Article  CAS  PubMed  Google Scholar 

  • Beller, H.R., Han, R., Karaoz, U., Lim, H., and Brodie, E.L. 2013. Genomic and physiological characterization of the chromatereducing, aquifer-derived Firmicute Pelosinus sp. strain HCF1. Appl. Environ. Microbiol. 79, 63–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benson, H.J. 2002. Microbiological applications; a laboratory manual in general microbiology. 8th ed. McGraw Hill, New York, USA.

    Google Scholar 

  • Blodau, C., Hoffmann, S., Peine, A., and Peiffer, S. 1998. Iron and sulfate reduction in the sediments of acidic mine lake 116 (Brandenburg, Germany): Rates and geochemical evaluation. Water Air Soil Pollut. 108, 249–270.

    Article  CAS  Google Scholar 

  • Buck, J.D. 1982. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl. Environ. Microbiol. 44, 992–993.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caccavo, F., Blakemore, R.P., and Lovley, D.R. 1992. A hydrogenoxidizing, Fe(III)-reducing microorganism from the Great Bay estuary, New Hampshire. Appl. Environ. Microbiol. 58, 3211–3216.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caccavo, F. Jr., Lonergan, D.J., Lovley, D.R., Davis, M., Stolz, J.F., and McInerney, M.J. 1994. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl. Environ. Microbiol. 60, 3752–3759.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Childers, S.E., Ciufo, S., and Lovley, D.R. 2002. Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature 416, 767–769.

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein, J. 1981. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 17, 368–376.

    Article  CAS  PubMed  Google Scholar 

  • Friese, K., Wendt-Potthoff, K., Zachmann, D.W., Fauville, A., Mayer, B., and Veizer, J. 1998. Biogeochemistry of iron and sulfur in sediments of an acidic mining lake in Lusatia, Germany. Water Air Soil Pollut. 108, 231–247.

    Article  CAS  Google Scholar 

  • Gonzalez, J.M. and Saiz-Jimenez, C. 2002. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ. Microbiol. 4, 770–773.

    Article  CAS  PubMed  Google Scholar 

  • Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41, 95–98.

    CAS  Google Scholar 

  • Hong, Y., Wu, P., Li, W., Gu, J., and Duan, S. 2012. Humic analog AQDS and AQS as an electron mediator can enhance chromate reduction by Bacillus sp. strain 3C3. Appl. Microbiol. Biotechnol. 93, 2661–2668.

    Article  CAS  PubMed  Google Scholar 

  • Islam, F.S., Gault, A.G., Boothman, C., Polya, D.A., Charnock, J.M., Chatterjee, D., and Lloyd, J.R. 2004. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430, 68–71.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, D.B., Rolfe, S., Hallberg, K.B., and Iversen, E. 2001. Isolation and phylogenetic characterization of acidophilic microorganisms indigenous to acidic drainage waters at an abandoned Norwegian copper mine. Environ. Microbiol. 3, 630–637.

    Article  CAS  PubMed  Google Scholar 

  • Kaneda, T. 1991. Iso-and anteiso-fatty acids in bacteria: Biosynthesis, function, and taxonomic significance. Microbiol. Rev. 55, 288–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y. S., Lee, J.H., Yi, H., et al. 2012. Introducing EzTaxone-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716–721.

    Article  CAS  PubMed  Google Scholar 

  • Kim, K.K., Lee, J.S., Lee, K.C., Oh, H.M., and Kim, S.G. 2010. Pontibaca methylaminivorans gen. nov., sp. nov., a member of the family Rhodobacteraceae. Int. J. Syst. Evol. Microbiol. 60, 2170–2175.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • L’Haridon, S., Miroshnichenko, M.L., Kostrikina, N.A., Tindall, B.J., Spring, S., Schumann, P., Stackebrandt, E., Bonch-Osmolovskaya, E.A., and Jeanthon, C. 2006. Vulcanibacillus modesticaldus gen. nov., sp. nov., a strictly anaerobic, nitrate-reducing bacterium from deep-sea hydrothermal vents. Int. J. Syst. Evol. Microbiol. 56, 1047–1053.

    Article  PubMed  Google Scholar 

  • Lane, D. 1991. 16S/23S rRNA sequencing, pp. 115–175. In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic acid techniques in bacterial systematics, Wiley, Chichester, UK.

    Google Scholar 

  • Li, X., Park, J.H., Edraki, M., and Baumgartl, T. 2013. Understanding the salinity issue of coal mine spoils in the context of salt cycle. Environ. Geochem. Health 36, 453–465.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., Peng, J., Weber, K.A., and Zhu, Y. 2011. Phylogenetic diversity of Fe(III)-reducing microorganisms in rice paddy soil: Enrichment cultures with different short-chain fatty acids as electron donors. J. Soils Sediments 11, 1234–1242.

    Article  CAS  Google Scholar 

  • Lovley, D.R. 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55, 259–287.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lovley, D.R., Chapelle, F.H., and Phillips, E.J. 1990. Fe(III)-reducing bacteria in deeply buried sediments of the Atlantic Coastal Plain. Geology 18, 954–957.

    Article  CAS  Google Scholar 

  • Lovley, D.R. and Phillips, E.J. 1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. Environ. Microbiol. 51, 683–689.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lovley, D.R. and Phillips, E.J. 1988. Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54, 1472–1480.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meslé, M., Dromart, G., and Oger, P. 2013. Microbial methanogenesis in subsurface oil and coal. Res. Microbiol. 164, 959–972.

    Article  PubMed  Google Scholar 

  • Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.

    Article  CAS  Google Scholar 

  • Nei, M., Kumar, S., and Takahashi, K. 1998. The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small. Proc. Natl. Acad. Sci. USA 95, 12390–12397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nevin, K.P., Holmes, D.E., Woodard, T.L., Hinlein, E.S., Ostendorf, D.W., and Lovley, D.R. 2005. Geobacter bemidjiensis sp. nov. and Geobacter psychrophilus sp. nov., two novel Fe(III)-reducing subsurface isolates. Int. J. Syst. Evol. Microbiol. 55, 1667–1674.

    Article  CAS  PubMed  Google Scholar 

  • Ogg, C.D. and Patel, B.K. 2009. Thermotalea metallivorans gen. nov., sp. nov., a thermophilic, anaerobic bacterium from the Great Artesian Basin of Australia aquifer. Int. J. Syst. Evol. Microbiol. 59, 964–971.

    Article  CAS  PubMed  Google Scholar 

  • Pruesse, E., Quast, C., Knittel, K., Fuchs, B.M., Ludwig, W., Peplies, J., and Glockner, F.O. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101., MIDI Inc, Newark, DE,USA.

    Google Scholar 

  • Schaeffer, A.B. and Fulton, M.D. 1933. A simplified method of staining endospores. Science 77, 194.

    Article  CAS  PubMed  Google Scholar 

  • Semple, K., Westlake, D., and Krouse, H. 1987. Sulfur isotope fractionation by strains of Alteromonas putrefaciens isolated from oil field fluids. Can. J. Microbiol. 33, 372–376.

    Article  CAS  Google Scholar 

  • Shirling, E.B. and Gottlieb, D. 1966. Methods for characterization of Streptomyces species. Int. J. Syst. Evol. Microbiol. 16, 313–340.

    Google Scholar 

  • Si, O.J., Kim, S.J., Jung, M.Y., Choi, S.B., Kim, J.G., Kim, S.G., Roh, S.W., Lee, S., and Rhee, S.K. 2015. Leeuwenhoekiella polynyae sp. nov., isolated from a polynya in western Antarctica. Int. J. Syst. Evol. Microbiol. 65, 1694–1699.

    Article  CAS  PubMed  Google Scholar 

  • Siegert, M., Cichocka, D., Herrmann, S., Grundger, F., Feisthauer, S., Richnow, H.H., Springael, D., and Krüger, M. 2011. Accelerated methanogenesis from aliphatic and aromatic hydrocarbons under iron- and sulfate-reducing conditions. FEMS Microbiol. Lett. 315, 6–16.

    Article  CAS  PubMed  Google Scholar 

  • Slobodkin, A., Reysenbach, A.L., Strutz, N., Dreier, M., and Wiegel, J. 1997. Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring. Int. J. Syst. Bacteriol. 47, 541–547.

    Article  CAS  PubMed  Google Scholar 

  • Slobodkina, G.B., Panteleeva, A.N., Kostrikina, N.A., Kopitsyn, D.S., Bonch-Osmolovskaya, E.A., and Slobodkin, A.I. 2013. Tepidibacillus fermentans gen. nov., sp. nov.: A moderately thermophilic anaerobic and microaerophilic bacterium from an underground gas storage. Extremophiles 17, 833–839.

    Article  CAS  PubMed  Google Scholar 

  • Sororzano, L. 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr. 14, 799–801.

    Article  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, B., Charchuk, R., Li, C., Nesbo, C., Abu Laban, N., and Foght, J. 2014. Draft genome sequence of uncultivated Firmicutes (Peptococcaceae SCADC) single cells sorted from methanogenic alkane-degrading cultures. Genome Announc. 2, e00909–14.

    PubMed  PubMed Central  Google Scholar 

  • Trüper, H.G. and Schlegel, H.G. 1964. Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek 30, 225–238.

    Article  Google Scholar 

  • Tschech, A. and Pfennig, N. 1984. Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch. Microbiol. 137, 163–167.

    Article  CAS  Google Scholar 

  • Weber, K.A., Achenbach, L.A., and Coates, J.D. 2006. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat. Rev. Microbiol. 4, 752–764.

    Article  CAS  PubMed  Google Scholar 

  • Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Widdel, F. and Bak, F. 1992. Gram-negative mesophilic sulfate-reducing bacteria, pp. 3352–3378. In Starr, M.P., Stolp, H., Trüper H.G., Balows, A., and Schlegal, H.G. (eds.), The Prokaryotes, 2nd ed vol. 1. Springer, Berlin, Germany.

    Chapter  Google Scholar 

  • Wrighton, K.C., Agbo, P., Warnecke, F., Weber, K.A., Brodie, E.L., DeSantis, T.Z., Hugenholtz, P., Andersen, G.L., and Coates, J.D. 2008. A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. ISME J. 2, 1146–1156.

    Article  CAS  PubMed  Google Scholar 

  • Yarza, P., Yilmaz, P., Pruesse, E., Glöckner, F.O., Ludwig, W., Schleifer, K.H., Whitman, W.B., Euzéby, J., Amann, R., and Rosselló-Móra, R. 2014. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12, 635–645.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y.Z., Fang, M.X., Zhang, W.W., Li, T.T., Wu, M., and Zhu, X.F. 2013. Salimesophilobacter vulgaris gen. nov., sp. nov., an anaerobic bacterium isolated from paper-mill wastewater. Int. J. Syst. Evol. Microbiol. 63, 1317–1322.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Keun Rhee.

Additional information

These authors contributed equally to this work.

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, UG., Kim, SJ., Hong, H. et al. Calculibacillus koreensis gen. nov., sp. nov., an anaerobic Fe(III)-reducing bacterium isolated from sediment of mine tailings. J Microbiol. 54, 413–419 (2016). https://doi.org/10.1007/s12275-016-6086-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-016-6086-8

Keywords

Navigation