Skip to main content

Advertisement

Log in

Understanding the salinity issue of coal mine spoils in the context of salt cycle

  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Coal mine spoils (CMSs), the solid wastes originated from the rock formations and soil cover overlying or interbedded with coal seams, are a worldwide environmental management challenge. Previous studies have shown that salinity is of most concern among the CMSs’ environmental impacts, especially in Australia. With increasing concerns from both the governments and communities, there is a real need for the coal mining industry to understand the source, dynamics and management options of CMS salinity. We reviewed the general properties of CMSs from coal mine sites worldwide and the current understanding of the CMS salinity, which are in a limited number of available published reports. Properties (e.g., pH, electrical conductivity and hydraulic conductivity) of studied CMSs varied largely due to its complex lithological origination. A conceptual model was proposed to illustrate the origin, dispersion paths and transformations dynamics of salts in spoils, taking the scenario of a coal mine in Australia as an example. The major factors governing the salt dynamics in CMSs are summarized as mineral weatherability and salt leachability of the spoils. Management of CMS salinity is still a vague area awaiting more extensive studies. Three topics related to the management were explored in the review, which are pre-mining planning, spatial variability of spoil properties and remediation including electrokinetics and phytoremediation. Particularly, based on the geological classification of CMSs and the leachate chemistry of spoils of various sources, a clear relationship between salinity and geounits was established. This association has a potential application in pre-mining planning for the management of salinity from coal mine spoils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bagger, L. (2005). Assessing environmental risks and consequences of in-pit coal tailings disposal. Brisbane: The University of Queensland.

    Google Scholar 

  • Bellini, G., Sumner, M. E., Radcliffe, D. E., & Qafoku, N. P. (1996). Anion transport through columns of highly weathered acid soil: Adsorption and retardation. Soil Science Society of America Journal, 60, 132–137.

    Article  CAS  Google Scholar 

  • Ben-Hur, M., Yolcu, G., Uysal, H., Lado, M., & Paz, A. (2009). Soil structure changes: Aggregate size and soil texture effects on hydraulic conductivity under different saline and sodic conditions. Soil Research, 47(7), 688–696.

    Article  CAS  Google Scholar 

  • Bian, Z. F., Dong, J. H., Lei, S. G., Leng, H. L., Mu, S. G., & Wang, H. (2009). The impact of disposal and treatment of coal mining wastes on environment and farmland. Environmental Geology, 58, 625–634.

    Article  CAS  Google Scholar 

  • BMA (BHP Billiton Mitsubishi Alliance Coal Operations Pty Ltd) (2009). 14 Waste management. Daunia coal mine project: environmental impact statement. http://www.bhpbilliton.com/home/aboutus/regulatory/Documents/dauniaMineEisSection14WasteManagement.pdf. Accessed on 02 September 2012.

  • Bui, E. N., & Moran, C. J. (2000). Regional-scale investigation of the spatial distribution and origin of soluble salts in central north Queensland. Hydrol Processes, 14, 237–250.

    Article  Google Scholar 

  • Carras, J. N., Day, S., Saghafi, A., & Roberts, O. C. (2005). Spontaneous combustion in open cut coal mines—recent Australian research. Australasian Institute of Mining and Metallurgy, 2005, 195–200.

    Google Scholar 

  • Carter, C. T., & Ungar, I. A. (2002). Aboveground vegetation, seed bank and soil analysis of a 31-year-old forest restoration on coal mine spoil in southeastern Ohio. American Midland Naturalist, 147, 44–59.

    Article  Google Scholar 

  • Chaulya, S. K., Singh, R. S., Chakraborty, M. K., & Tewary, B. K. (2000). Bioreclamation of coal mine overburden dumps in India. Land Contamination and Reclamation, 8, 189–199.

    Google Scholar 

  • Cha-um, S., Pokasombat, Y., & Kirdmanee, C. (2011). Remediation of salt-affected soil by gypsum and farmyard manure—importance for the production of Jasmine rice. Australian Journal of Crop Science, 5, 458–465.

    Google Scholar 

  • Chernaik, M. (2010). Guidebook for evaluating mining project EIAs. Eugene, US: Environmental Law Alliance Worldwide.

    Google Scholar 

  • Chivas, A. R., Andrew, A. S., Lyons, W. B., Bird, M. I., & Donnelly, T. H. (1991). Isotopic constraints on the origin of salts in Australian Playas. 1. Sulfur. Palaeogeography Palaeoecology, 84, 309–332.

    Article  Google Scholar 

  • NSW Minerals Council (2011) Water use in the NSW minerals industry. Sydney, NSW, Australia.

  • Dang, Z., Liu, C., & Haigh, M. J. (2002). Mobility of heavy metals associated with the natural weathering of coal mine spoils. Environmental Pollution, 118, 419–426.

    Article  CAS  Google Scholar 

  • Dave, S., & Tipre, D. (2012). Coal mine drainage pollution and its remediation. In T. Satyanarayana, & B. N., Johri (Eds.), Microorganisms in environmental management (pp. 719–743). Netherlands: Springer.

  • Day, S. J., & Riley, K. W. (2004). Waste streams in black coal mining and coal-fired power generation. Pullenvale: Cooperative Research Centre for Coal in Sustainable Development QTTC, Australia.

  • Dutta, R. K., & Agrawal, M. (2001). Litterfall, litter decomposition and nutrient release in five exotic plant species planted on coal mine spoils. Pedobiologia, 45, 298–312.

    Article  CAS  Google Scholar 

  • Dutta, R. K., & Agrawal, M. (2003). Restoration of opencast coal mine spoil by planting exotic tree species: A case study in dry tropical region. Ecological Engineering, 21, 143–151.

    Article  Google Scholar 

  • Evangelou, V. P., & Zhang, Y. L. (1995). A review—Pyrite oxidation mechanisms and acid-mine drainage prevention. Critical Reviews in Environmental Science and Technology, 25, 141–199.

    Article  CAS  Google Scholar 

  • Fielding, C. R., Sliwa, R., Holcombe, R. J., & Kassan, J. (2000). A new palaeogeographic synthesis of the Bowen Basin of central Queensland. In Paper presented at the Bowen Basin Symposium 2000, Brisbane.

  • Firth, B., Taylor, R., Hannink, R., & O’Brien, M. (2012). Remediation of saline water from coal mining. Brisbane: CSIRO Energy Technology.

    Google Scholar 

  • Fityus, S., Hancock, G., & Wells, T. (2008). Geotechnical characteristics of coal mine spoil. Aust Geomechan, 43, 13–22.

    Google Scholar 

  • Foth, H. (1990). Fundamentals of soil science (8th ed.). New York: Wiley.

    Google Scholar 

  • Franks, D. M., Boger, D. V., Cote, C. M., & Mulligan, D. R. (2011). Sustainable development principles for the disposal of mining and mineral processing wastes. Resource Policy, 36, 114–122.

    Article  Google Scholar 

  • Garcia-Vallve, S., Palau, J., & Romeu, A. (1999). Horizontal gene transfer in glycosyl hydrolases inferred from codon usage in Escherichia coli and Bacillus subtilis. Molecular Biology and Evolution, 16, 1125–1134.

    Article  CAS  Google Scholar 

  • Gozzard, E., Vink, S., Nanjappa, V., & Moran, C. J. (2009). Salt dissolution dynamics on surface mine spoils. Water in Mining 2009 Proceedings, 10, 233–240.

  • Guggenheim, S., & Martin, R. T. (1995). Definition of clay and clay mineral: Joint report of the AIPEA and CMS nomenclature committees. Clay Minerals, 30, 257–259.

    Article  CAS  Google Scholar 

  • Hammond, A. A. (1988). Mining and quarrying wastes: A critical review. Engineering Geology, 25, 17–31.

    Article  Google Scholar 

  • Hawke, A. (2009), Report of the independent review of the EPBC Act 1999. Canberra: Department of the Environment, Water, Heritage and the Arts. http://www.environment.gov.au/epbc/review/publications/pubs/epbc-review-update-20090925.pdf. Accessed 23 August 2012.

  • Hawkins, J. W. (2004). Predictability of surface mine spoil hydrologic properties in the Appalachian plateau. Ground Water, 42, 119–125.

    Article  CAS  Google Scholar 

  • Herczeg, A. L., Dogramaci, S. S., & Leaney, F. W. J. (2001). Origin of dissolved salts in a large, semi-arid groundwater system: Murray Basin, Australia. Marine Freshwater Research, 52, 41–52.

    Article  CAS  Google Scholar 

  • Herzig, J., Szczepanska, J., Witczak, S., & Twardowska, I. (1986). Chlorides in the carboniferous rocks of the Upper Silesian Coal Basin: Environmental contamination and prognosis. Fuel, 65, 1134–1141.

    Article  CAS  Google Scholar 

  • Jha, A. K., & Singh, J. S. (1991). Spoil characteristics and vegetation development of an age series of mine spoils in a dry tropical environment. Vegetatio, 97, 63–76.

    Google Scholar 

  • Jin, L. X., Williams, E. L., Szramek, K. J., Walter, L. A., & Hamilton, S. K. (2008). Silicate and carbonate mineral weathering in soil profiles developed on Pleistocene glacial drift (Michigan, USA): Mass balances based on soil water geochemistry. Geochim Cosmochim Ac, 72, 1027–1042.

    Article  CAS  Google Scholar 

  • Joeckel, R. M., Clement, B. J. A., & Bates, L. R. V. F. (2005). Sulfate-mineral crusts from pyrite weathering and acid rock drainage in the Dakota formation and Graneros Shale, Jefferson County, Nebraska. Chemical Geology, 215, 433–452.

    Article  CAS  Google Scholar 

  • Jordan, M. M., Navarro-Pedreno, J., Garcia-Sanchez, E., Mateu, J., & Juan, P. (2004). Spatial dynamics of soil salinity under arid and semi-arid conditions: Geological and environmental implications. Environmental Geology, 45, 448–456.

    Article  CAS  Google Scholar 

  • Juwarkar, A. A., & Jambhulkar, H. P. (2008). Phytoremediation of coal mine spoil dump through integrated biotechnological approach. Bioresource Technology, 99, 4732–4741.

    Article  CAS  Google Scholar 

  • Juwarkar, A. A., Yadav, S. K., Thawale, P. R., Kumar, P., Singh, S. K., & Chakrabarti, T. (2009). Developmental strategies for sustainable ecosystem on mine spoil dumps: A case of study. Environmental Monitoring and Assessment, 157, 471–481.

    Article  CAS  Google Scholar 

  • Kalinski, M. E., Karem, W. A., & Little, L. M. (2010). Estimating hydrocompression potential of mine spoils from a site in eastern Kentucky using dry unit weight and moisture content. International Journal of Mining, Reclamation and Environment, 24, 350–362.

    Article  CAS  Google Scholar 

  • Kent, M. (1982). Plant growth problems in colliery spoil reclamation: A review. Appled Geography, 2, 83–107.

    Article  Google Scholar 

  • Keskin, T., & Makineci, E. (2009). Some soil properties on coal mine spoils reclaimed with black locust (Robinia pceudoacacia L.) and umbrella pine (Pinus pinea L.) in Agacli-Istanbul. Environmental Monitoring and Assessment, 159, 407–414.

    Article  CAS  Google Scholar 

  • Lee, Y. J., Choi, J. H., Lee, H. G., & Ha, T. H. (2013). Electrokinetic remediation of saline soil using pulse power. Environmental Engineering Science, 30(3), 133–141.

    Article  CAS  Google Scholar 

  • Loague, K. (1992). Using soil texture to estimate saturated hydraulic conductivity and the impact on rainfall-runoff simulations. Water Resources Bulletin, 28, 687–693.

    Article  Google Scholar 

  • Lottermoser, B. G. (2007). Mine Wastes: characterization, treatment and environmental impacts. Berlin: Springer.

    Google Scholar 

  • Madsen, P. A., & Mulligan, D. R. (2006). Effect of NaCl on emergence and growth of a range of provenances of Eucalyptus citriodora, Eucalyptus populnea, Eucalyptus camaldulensis and Acacia salicina. Forest Ecology and Management, 228, 152–159.

    Article  Google Scholar 

  • Mcgreevy, J. P., & Smith, B. J. (1984). The possible role of clay-minerals in salt weathering. Catena, 11, 169–175.

    Article  Google Scholar 

  • McKinnon, E. (2002). The environmental effects of mining waste disposal at Lihir Gold Mine, Papua New Guinea. Journal of Rural Remote Environmental Health, 1, 40–50.

    Google Scholar 

  • Meseguer, S., Sanfeliu, T., & JordÃn, M. (2009). Classification and statistical analysis of mine spoils chemical composition from Oliete basin (Teruel, NE Spain). Environmental Geology, 56, 1461–1466.

    Article  CAS  Google Scholar 

  • Morris, P. H. (1990). The engineering properties and behaviour of coal tailings. Dissertation, The University of Queensland.

  • Naprasnikova, E. V. (2008). Biological properties of soils on mine tips. Eurasian Soil Science, 41, 1314–1320.

    Article  Google Scholar 

  • Nganje, T. N., Adamu, C. I., Ugbaja, A. N., Ebieme, E., & Sikakwe, G. U. (2011). Environmental contamination of trace elements in the vicinity of Okpara coal mine, Enugu, Southeastern Nigeria. Arabian Journal of Geoscience, 4, 199–205.

    Article  CAS  Google Scholar 

  • Noori, M., Zendehdel, M., & Ahmadi, A. (2006). Using natural zeolite for the improvement of soil salinity and crop yield. Toxicological and Environmental Chemistry, 88(1), 77–84.

    Article  CAS  Google Scholar 

  • Okagbue, C. O. (1984). The geotechnical characteristics and stability of a spoil heap at a Southwestern Pennsylvania Coal-Mine, USA. Engineering Geology, 20, 325–341.

    Article  Google Scholar 

  • Pankova, Y., Konyushkova, M., & Luo, G. (2010) Effect of climate on soil salinity in subboreal deserts of Asia. In Paper presented at the 19th World Congress of Soil Science, Brisbane, Australia.

  • Park, J. H., Li, X., Edraki, M., Baumgartl, T., & Kirsch, B. (2013). Geochemical assessments and classification of coal mine spoils for better understanding of potential salinity issues at closure. Environmental Science: Process Impacts, 15, 1235–1244.

    CAS  Google Scholar 

  • Pearce, R. C., & Sumner, M. E. (1997). Apparent salt sorption reactions in an unfertilized acid subsoil. Soil Science Society of America Journal, 61, 765–772.

    Article  CAS  Google Scholar 

  • Plass, W. T., & Vogel, W. G. (1973). Chemical properties and particle-size distribution of 39 surface-mine spoils in southern West Virginia (Trans: Forest Service USDoA). USDA Forest Service research paper NE-276.

  • Qadir, M., Steffens, D., Yan, F., & Schubert, S. (2003). Sodium removal from a calcareous saline-sodic soil through leaching and plant uptake during phytoremediation. Land Degradation and Development, 14(3), 301–307.

    Article  Google Scholar 

  • Ravindran, K. C., Venkatesan, K., Balakrishnan, V., Chellappan, K. P., & Balasubramanian, T. (2007). Restoration of saline land by halophytes for Indian soils. Soil Biology & Biochemistry, 39, 2661–2664.

    Article  CAS  Google Scholar 

  • Ribeiro, J., da Silva, E. F., Li, Z., Ward, C., & Flores, D. (2010). Petrographic, mineralogical and geochemical characterization of the Serrinha coal waste pile (Douro Coalfield, Portugal) and the potential environmental impacts on soil, sediments and surface waters. International Journal of Coal Geology, 83, 456–466.

    Article  CAS  Google Scholar 

  • Saiti, F., Jamu, D. M., Chisala, B., & Kambewa, P. (2007). Simulation of optimal harvesting strategies for small-scale mixed-sex tilapia (Oreochromis shiranus Boulenger 1896) ponds using a bio-economic model. Aquacult Res, 38, 340–350.

    Article  Google Scholar 

  • Salazar, M., Bosch-Serra, A., Estudillos, G., & Poch, R. M. (2009). Rehabilitation of semi-arid coal mine spoil bank soils with mine residues and farm organic by-products. Arid Land Research and Management, 23, 327–341.

    Article  CAS  Google Scholar 

  • Szczepanska, J., & Twardowska, I. (1999). Distribution and environmental impact of coal-mining wastes in Upper Silesia, Poland. Environmental Geology, 38, 249–258.

    Article  CAS  Google Scholar 

  • Tejada, M., Garcia, C., Gonzalez, J. L., & Hernandez, M. T. (2006). Use of organic amendment as a strategy for saline soil remediation: Influence on the physical, chemical and biological properties of soil. Soil Biology & Biochemistry, 38(6), 1413–1421.

    Article  CAS  Google Scholar 

  • US Department of Agriculture (2009). Saturated hydraulic conductivity in relation to soil texture. http://www.mo10.nrcs.usda.gov/references/guides/properties/sathydcond.html. Accessed on 30 August 2012.

  • US Energy Information Administration, International Energy Statistics Team. (2008). World coal production, Most recent estimates 19802007. http://www.eia.gov/state/state-energy-profiles-notes-sources-data.cfm. Accessed on 10 October 2012.

  • Vear, A., & Curtis, C. (1981). A quantitative-evaluation of pyrite weathering. Earth Surface Processes, 6, 191–198.

    Article  CAS  Google Scholar 

  • Velde, B., & Meunier, A. (2008). The origin of clay minerals in soils and weathered rocks. Berlin: Springer.

    Book  Google Scholar 

  • Wada, S. I. (1984). Mechanism of apparent salt absorption in Ando soils. Soil Science and Plant Nutrition, 30, 77–83.

    Article  CAS  Google Scholar 

  • Zhu, J. K. (2001). Plant salt tolerance. Trends in Plant Science, 6, 66–71.

    Article  CAS  Google Scholar 

  • Zielinski, R. A., Otton, J. K., & Johnson, C. A. (2001). Sources of salinity near a coal mine spoil pile, north-central Colorado. Journal of Environmental Quality, 30, 1237–1248.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Bevan Emmerton of B.R. Emmerton PTY. LTD. for the original idea of spoil classification based on geology and for his guidance during field sampling, and the financial support of UQ Postdoctoral Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Hee Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Park, J.H., Edraki, M. et al. Understanding the salinity issue of coal mine spoils in the context of salt cycle. Environ Geochem Health 36, 453–465 (2014). https://doi.org/10.1007/s10653-013-9573-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-013-9573-4

Keywords

Navigation