Skip to main content
Log in

Regulation and function of the Salmonella MgtC virulence protein

  • Minireview
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Salmonella enterica serovar Typhimurium produces many virulence proteins to cause diseases. The Salmonella MgtC protein is one of such virulence proteins specially required for intracellular proliferation inside macrophages and mouse virulence. In this review, we will cover how the mgtC gene is turned on or off and what the signals required for mgtC expression are. Later in this review, we will discuss a recent understanding of MgtC function in Salmonella pathogenesis by identifying its target proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alix, E. and Blanc-Potard, A.B. 2007. MgtC: A key player in intramacrophage survival. Trends Microbiol. 15, 52–256.

    Article  Google Scholar 

  • Alix, E. and Blanc-Potard, A.B. 2008. Peptide-assisted degradation of the salmonella MgtC virulence factor. EMBO J. 27, 546–557.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bader, M.W., Sanowar, S., Daley, M.E., Schneider, A.R., Cho, U., Xu, W., Klevit, R.E., Le Moual, H., and Miller, S.I. 2005. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell. 122, 461–472.

    Article  CAS  PubMed  Google Scholar 

  • Blanc-Potard, A.B. and Groisman, E.A. 1997. The salmonella selc locus contains a pathogenicity island mediating intramacrophage survival. EMBO J. 16, 5376–5385.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blanc-Potard, A.B. and Lafay, B. 2003. MgtC as a horizontally-acquired virulence factor of intracellular bacterial pathogens: Evidence from molecular phylogeny and comparative genomics. J. Mol. Evol. 57, 479–486.

    Article  CAS  PubMed  Google Scholar 

  • Buchmeier, N., Blanc-Potard, A., Ehrt, S., Piddington, D., Riley, L., and Groisman, E.A. 2000. A parallel intraphagosomal survival strategy shared by Mycobacterium tuberculosis and Salmonella enterica. Mol. Microbiol. 35, 1375–1382.

    Article  CAS  PubMed  Google Scholar 

  • Chamnongpol, S., Cromie, M., and Groisman, E.A. 2003. Mg2+ sensing by the Mg2+ sensor PhoQ of Salmonella enterica. J. Mol. Biol. 325, 795–807.

    Article  CAS  PubMed  Google Scholar 

  • Chamnongpol, S. and Groisman, E.A. 2000. Acetyl phosphate-dependent activation of a mutant PhoP response regulator that functions independently of its cognate sensor kinase. J. Mol. Biol. 300, 291–305.

    Article  CAS  PubMed  Google Scholar 

  • Choi, E., Kwon, K., and Lee, E.J. 2015. A single amino acid of a Salmonella virulence protein contributes to pathogenicity by protecting from the FtsH-mediated proteolysis. FEBS Lett. 589, 1346–1351.

    Article  CAS  PubMed  Google Scholar 

  • Eriksson, S., Lucchini, S., Thompson, A., Rhen, M., and Hinton, J.C. 2003. Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol. Microbiol. 47, 103–118.

    Article  CAS  PubMed  Google Scholar 

  • Garcia Vescovi, E., Soncini, F.C., and Groisman, E.A. 1996. Mg2+ as an extracellular signal: Environmental regulation of Salmonella virulence. Cell. 84, 165–174.

    Article  CAS  PubMed  Google Scholar 

  • Grabenstein, J.P., Fukuto, H.S., Palmer, L.E., and Bliska, J.B. 2006. Characterization of phagosome trafficking and identification of PhoP-regulated genes important for survival of Yersinia pestis in macrophages. Infect. Immun. 74, 3727–3741.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gunzel, D., Kucharski, L.M., Kehres, D.G., Romero, M.F., and Maguire, M.E. 2006. The MgtC virulence factor of Salmonella enterica Serovar Typhimurium activates Na+, K+-ATPase. J. Bacteriol. 188, 5586–5594.

    Article  PubMed Central  PubMed  Google Scholar 

  • Henkin, T.M. and Yanofsky, C. 2002. Regulation by transcription attenuation in bacteria: How RNA provides instructions for transcription termination/antitermination decisions. Bioessays 24, 700–707.

    Article  CAS  PubMed  Google Scholar 

  • Karimova, G., Pidoux, J., Ullmann, A., and Ladant, D. 1998. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc. Natl. Acad. Sci. USA 95, 5752–5756.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lavigne, J.P., O-Callaghan, D., and Blanc-Potard, A.B. 2005. Requirement of MgtC for Brucella suis intramacrophage growth: A potential mechanism shared by Salmonella enterica and Mycobacterium tuberculosis for adaptation to a low-Mg2+ environment. Infect. Immun. 73, 3160–3163.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee, E.J., Choi, J., and Groisman, E.A. 2014. Control of a salmonella virulence operon by proline-charged tRNA(pro). Proc. Natl. Acad. Sci. USA 111, 3140–3145.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee, E.J. and Groisman, E.A. 2010. An antisense rna that governs the expression kinetics of a multifunctional virulence gene. Mol. Microbiol. 76, 1020–1033.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee, E.J. and Groisman, E.A. 2012. Control of a Salmonella virulence locus by an ATP-sensing leader messenger RNA. Nature 486, 271–275.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee, E.J. and Groisman, E.A. 2012. Tandem attenuators control expression of the Salmonella mgtCBR virulence operon. Mol. Microbiol. 86, 212–224.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee, E.J., Pontes, M.H., and Groisman, E.A. 2013. A bacterial virulence protein promotes pathogenicity by inhibiting the bacterium-s own F1Fo ATP synthase. Cell. 154, 146–156.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maloney, K.E. and Valvano, M.A. 2006. The mgtC gene of Burkholderia cenocepacia is required for growth under magnesium limitation conditions and intracellular survival in macrophages. Infect. Immun. 74, 5477–5486.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martin, W. and Koonin, E.V. 2006. A positive definition of prokaryotes. Nature 442, 868.

    Article  CAS  PubMed  Google Scholar 

  • Pontes, M.H., Lee, E.J., Choi, J., and Groisman, E.A. 2015. Salmonella promotes virulence by repressing cellulose production. Proc. Natl. Acad. Sci. USA 112, 5183–5188.

    Article  CAS  PubMed  Google Scholar 

  • Prost, L.R., Daley, M.E., Le Sage, V., Bader, M.W., Le Moual, H., Klevit, R.E., and Miller, S.I. 2007. Activation of the bacterial sensor kinase PhoQ by acidic pH. Mol. Cell. 26, 165–174.

    Article  CAS  PubMed  Google Scholar 

  • Rang, C., Alix, E., Felix, C., Heitz, A., Tasse, L., and Blanc-Potard, A.B. 2007. Dual role of the MgtC virulence factor in host and non-host environments. Mol. Microbiol. 63, 605–622.

    Article  CAS  PubMed  Google Scholar 

  • Regulski, E.E. and Breaker, R.R. 2008. In-line probing analysis of riboswitches. Methods Mol. Biol. 419, 53–67.

    Article  CAS  PubMed  Google Scholar 

  • Retamal, P., Castillo-Ruiz, M., and Mora, G.C. 2009. Characterization of MgtC, a virulence factor of Salmonella enterica Serovar Typhi. PLoS One 4, e5551.

    Article  PubMed Central  PubMed  Google Scholar 

  • Senior, A.E. 1990. The proton-translocating atpase of Escherichia coli. Annu. Rev. Biophys. Biophys. Chem. 19, 7–41.

    Article  CAS  PubMed  Google Scholar 

  • Shin, D. and Groisman, E.A. 2005. Signal-dependent binding of the response regulators PhoP and PmrA to their target promoters in vivo. J. Biol. Chem. 280, 4089–4094.

    Article  CAS  PubMed  Google Scholar 

  • Soncini, F.C., Garcia Vescovi, E., Solomon, F., and Groisman, E.A. 1996. Molecular basis of the magnesium deprivation response in Salmonella typhimurium: Identification of PhoP-regulated genes. J. Bacteriol. 178, 5092–5099.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Steitz, J.A. 1969. Polypeptide chain initiation: Nucleotide sequences of the three ribosomal binding sites in bacteriophage R17 RNA. Nature 224, 957–964.

    Article  CAS  PubMed  Google Scholar 

  • Tao, T., Snavely, M.D., Farr, S.G., and Maguire, M.E. 1995. Magnesium transport in Salmonella typhimurium: mgtA encodes a Ptype ATPase and is regulated by Mg2+ in a manner similar to that of the mgtB P-type ATPase. J. Bacteriol. 177, 2654–2662.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zuker, M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zwir, I., Yeo, W.S., Shin, D., Latifi, T., Huang, H., and Groisman, E.A. 2014. Bacterial nucleoid-associated protein uncouples transcription levels from transcription timing. mBio 5, e01485–01414.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-Jin Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JW., Lee, EJ. Regulation and function of the Salmonella MgtC virulence protein. J Microbiol. 53, 667–672 (2015). https://doi.org/10.1007/s12275-015-5283-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-015-5283-1

Keywords

Navigation