Skip to main content
Log in

Mucilaginibacter composti sp. nov., with ginsenoside converting activity, isolated from compost

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

The Gram-negative, strictly aerobic, non-motile, non-spore-forming, rod shaped bacterial strain designated TR6-03T was isolated from compost, and its taxonomic position was investigated by using a polyphasic approach. Strain TR6-03T grew at 4–42°C and at pH 6.0–8.0 on R2A and nutrient agar without NaCl supplement. Strain TR6-03T had β-glucosidase activity, which was responsible for its ability to transform ginsenoside Re (one of the dominant active components of ginseng) to Rg2. On the basis of 16S rRNA gene sequence similarity, strain TR6-03T was shown to belong to the family Sphingobacteriaceae and to be related to Mucilaginibacter lappiensis ANJLI2T (96.3% sequence similarity), M. dorajii FR-f4T (96.1%), and M. rigui WPCB133T (94.1%). The G+C content of the genomic DNA was 45.6%. The predominant respiratory quinone was MK-7 and the major fatty acids were summed feature 3 (comprising C16:1 ω7c and/or iso-C15:0 20H), iso-C16:0 and iso-C17:0 3OH. DNA and chemotaxonomic data supported the affiliation of strain TR6-03T to the genus Mucilaginibacter. Strain TR6-03T could be differentiated genotypically and phenotypically from the recognized species of the genus Mucilaginibacter. The isolate therefore represents a novel species, for which the name Mucilaginibacter composti sp. nov. is proposed, with the type strain TR6-03T (=KACC 14956T = KCTC 12642T =LMG 23497T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atlas, R.M. 1993. Handbook of Microbiological Media. CRC Press, Boca Raton, Florida, USA.

    Google Scholar 

  • Baik, K.S., S.C. Park, E.M. Kim, C.H. Lim, and C.N. Seong. 2010. Mucilaginibacter rigui sp. nov., isolated from wetland freshwater, and emended description of the genus Mucilaginibacter. Int. J. Syst. Evol. Microbiol. 60, 134–139.

    Article  PubMed  CAS  Google Scholar 

  • Buck, J.D. 1982. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl. Environ. Microbiol. 44, 992–993.

    PubMed  CAS  Google Scholar 

  • Cappuccino, J.G. and N. Sherman. 2002. Microbiology: a laboratory manual, 6th ed. Pearson Education, Inc., California, USA.

    Google Scholar 

  • Chun, J., J.H. Lee, Y. Jung, M. Kim, S. Kim, B.K. Kim, and Y.W. Lim. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57, 2259–2261.

    Article  PubMed  CAS  Google Scholar 

  • Euzéby, J.P. 1997. List of bacterial names with standing in nomenclature: a folder available on the Internet. Int. J. Syst. Bacteriol. 47, 590–592. (http://www.bacterio.cict.fr)

    Article  PubMed  Google Scholar 

  • Felsenstein, J. 1985. Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.

    Article  Google Scholar 

  • Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416.

    Article  Google Scholar 

  • Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.

    CAS  Google Scholar 

  • Hiraishi, A., Y. Ueda, J. Ishihara, and T. Mori. 1996. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J. Gen. Appl. Microbiol. 42, 457–469.

    Article  CAS  Google Scholar 

  • Im, W.T., S.Y. Kim, Q.M. Liu, J.E. Yang, S.T. Lee, and T.H. Yi. 2010. Nocardioides ginsengisegetis sp. nov., isolated from soil of a ginseng field. J. Microbiol. 48, 623–628.

    Article  PubMed  CAS  Google Scholar 

  • Kim, B.C., K.H. Lee, M.N. Kim, J. Lee, and K.S. Shin. 2010. Mucilaginibacter dorajii sp. nov., isolated from the rhizosphere of Platycodon grandiflorum. FEMS Microbiol. Lett. 309, 130–135.

    PubMed  CAS  Google Scholar 

  • Kim, M.K., J.W. Lee, K.Y. Lee, and D.C. Yang. 2005. Microbial conversion of major ginsenoside Rb1 to pharmaceutically active minor ginsenoside Rd. J. Microbiol. 43, 456–462.

    PubMed  CAS  Google Scholar 

  • Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press, Cambridge, New York, NY, USA.

    Google Scholar 

  • Kumar, S., J. Dudley, M. Nei, and K. Tamura. 2008. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinf. 9, 299–306.

    Article  CAS  Google Scholar 

  • Männistö, M.K., M. Tiirola, J. McConnell, and M.M. Häggblom. 2010. Mucilaginibacter frigoritolerans sp. nov., Mucilaginibacter lappiensis sp. nov. and Mucilaginibacter mallensis sp. nov., isolated from soil and lichen samples. Int. J. Syst. Evol. Microbiol. 60, 2849–2856.

    Article  PubMed  Google Scholar 

  • Mesbah, M., U. Premachandran, and W. Whitman. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int. J. Syst. Bacteriol. 39, 159–167.

    Article  CAS  Google Scholar 

  • Moore, D.D. and D. Dowhan. 1995. Preparation and analysis of DNA, pp. 2–11. In F.W. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, and K. Struhl. (eds.), Current Protocols in Molecular Biology. Wiley, New York, NY, USA.

    Google Scholar 

  • Pankratov, T.A., B.J. Tindall, W. Liesack, and S.N. Dedysh. 2007. Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic sphagnum peat bog. Int. J. Syst. Evol. Microbiol. 57, 2349–2354.

    Article  PubMed  CAS  Google Scholar 

  • Park, C.S., M.H. Yoo, K.H. Noh, and D.K. Oh. 2010. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl. Microbiol. Biotechnol. 87, 9–19.

    Article  PubMed  CAS  Google Scholar 

  • Perry, L.B. 1973. Gliding motility in some non-spreading flexibacteria. J. Appl. Bacteriol. 36, 227–232.

    PubMed  CAS  Google Scholar 

  • Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    PubMed  CAS  Google Scholar 

  • Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., Newark, DE, USA.

    Google Scholar 

  • Stackebrandt, E. and B.M. Goebel. 1994. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44, 846–849.

    Article  CAS  Google Scholar 

  • Ten, L.N., W.T. Im, M.K. Kim, M.S. Kang, and S.T. Lee. 2004. Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J. Microbiol. Methods 56, 375–382.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876–4882.

    Article  Google Scholar 

  • Urai, M., T. Aizawa, Y. Nakagawa, M. Nakajima, and M. Sunairi. 2008. Mucilaginibacter kameinonensis sp., nov., isolated from garden soil. Int. J. Syst. Evol. Microbiol. 58, 2046–2050.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, X., J. Wang, J. Li, L. Fu, J. Gao, X. Du, H. Bi, Y. Zhou, and G. Tai. 2009. Highly selective biotransformation of ginsenoside Rb1 to Rd by the phytopathogenic fungus Cladosporium fulvum (syn. Fulvia fulva). J. Ind. Microbiol. Biotechnol. 36, 721–726.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Taek Im.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, CH., Choi, TE., Yu, H. et al. Mucilaginibacter composti sp. nov., with ginsenoside converting activity, isolated from compost. J Microbiol. 49, 393–398 (2011). https://doi.org/10.1007/s12275-011-1176-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-011-1176-0

Keywords

Navigation