Skip to main content
Log in

Macrolide resistance and In Vitro selection of resistance to antibiotics in Lactobacillus isolates

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Spreading of resistance to antibiotics is of great concern due to the increasing rate of isolation of multiresistant pathogens. Since commensal bacteria may transfer determinants of resistance to pathogens, studies on development of resistance should include also lactobacilli. Resistance to macrolides, penicillins and tetracycline was determined in 40 isolates of Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus crispatus, and Lactobacillus casei isolated from faeces of apparently healthy volunteers. Frequency of mutation and changes in susceptibility after serial exposure to these antibiotics at concentrations of 4× and 8× MIC were evaluated in susceptible isolates. Acquired resistance was defined as an increment in MIC values of at least four times in respect to the pre-selection values. Resistance to macrolides and/or tetracycline was identified in 14 and 4 isolates, respectively. ermB gene and A2058G mutation in 23S rRNA were detected in macrolide resistant isolates. Frequencies of mutation of susceptible isolates (n=26) were lower for ampicillin and erythromycin than for tetracycline. Serial exposure to antibiotics led to selection of resistant mutants. However, acquired resistance was rather unstable and was lost after subcultures in antibiotic-free medium in most mutants. Resistance to erythromycin was associated to a A2058G mutation in 23S rRNA. In conclusion, results indicate that resistance to macrolides and tetracycline is present among intestinal lactobacilli. Decrease in susceptibility following serial exposure to antibiotics might occur in lactobacilli, in a strain- and antibiotic-dependent way. Since lactobacilli are often used as probiotics, their ability to acquire resistance should be evaluated for isolates candidate to be included in probiotics based products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammor, M.S., A.B. Florez, A.M. van Hoek, C.G. de Los Reyes-Gavilan, H.J. Aarts, A. Margolles, and B. Mayo. 2008. Molecular characterization of intrinsic and acquired antibiotic resistance in lactic acid bacteria and bifidobacteria. J. Mol. Microbiol. Bio technol. 14, 6–15.

    Article  CAS  Google Scholar 

  • Begovic, J., G. Huys, B. Mayo, K. D’Haene, A.B. Florez, J. Lozo, M. Kojic, I. Strahinic, and L. Topisirovic. 2009. Human vaginal Lactobacillus rhamnosus harbor mutation in 23S rRNA associated with erythromycin resistance. Res. Microbiol. 160, 421–426.

    Article  PubMed  CAS  Google Scholar 

  • Cataloluk, O. and B. Gogebakan. 2004. Presence of drug resistance in intestinal lactobacilli of dairy and human origin. FEMS Microbiol. Lett. 236, 7–12.

    PubMed  CAS  Google Scholar 

  • Courvalin, P. 2006. Antibiotic resistance: the pros and cons of probiotics. Dig. Liver Dis. 38,Suppl 2, S261–265.

    Article  PubMed  Google Scholar 

  • Drago, L., L. Nicola, R. Mattina, and E. De Vecchi. 2010. In vitro selection of resistance in Escherichia coli and Klebsiella spp. at in vivo fluoroquinolone concentrations. BMC Microbiol. 10, 119.

    Article  PubMed  Google Scholar 

  • EFSA. 2008. Update of the criteria used in the assessment of bacterial resistance to antibiotics of human or veterinary importance. Prepared by the Panel on Additives and Products or Substances used in Animal Feed (Question No EFSA-Q-2008-004). EFSA Journal 732, 1–15.

    Google Scholar 

  • European Commission. 2002. Opinion of the Scientific Committee on Animal Nutrition on the criteria for assessing the safety of micro-organisms resistant to antibiotics of human clinical and veterinary importance. European Commission, Health and Consumer Protection Directorate General, Directorate C, Scientific Opinions, Brussels, Belgium

    Google Scholar 

  • Gevers, D., M. Danielsen, G. Huys, and J. Swings. 2003a. Molecular characterization of tet(M) genes in Lactobacillus isolates from different types of different types of fermented dry sausages. Appl. Environ. Microbiol. 69, 1270–1275.

    Article  PubMed  CAS  Google Scholar 

  • Gevers, D., G. Huys, and J. Swings. 2003b. In vitro conjugal transfer of tetracycline resistance from Lactobacillus isolates to other Gram-positive bacteria. FEMS Microbiol. Lett. 225, 125–130.

    Article  PubMed  CAS  Google Scholar 

  • Hawkey, P.M. and A.M. Jones. 2009. The changing epidemiology of resistance. J. Antimicrob. Chemother. 64 Suppl 1, i3–10.

    Article  Google Scholar 

  • Hummel, A.S., C. Hertel, W.H. Holzapfel, and C.M. Franz. 2007. Antibiotic resistances of starter and probiotic strains of lactic acid bacteria. Appl. Environ. Microbiol. 73, 730–739.

    Article  PubMed  CAS  Google Scholar 

  • Huys, G., K. D’Haene, M. Danielsen, J. Mättön, and P. Vandamme. 2008. Phenotypic and molecular assessment of antimicrobial resistance in Lactobacillus paracasei strains of food origin. J. Food Prot. 71, 339–344.

    PubMed  CAS  Google Scholar 

  • Jacobsen, L., A. Wilcks, K. Hammer, G. Huys, D. Gevers, and S.R. Andersen. 2006. Horizontal transfer of tet(M) and erm(B) resistance plasmids from food strains of Lactobacillus plantarum to Enterococcus faecalis JH2-2 in the gastrointestinal tract of gnotobiotics rats. FEMS Microbiol. Ecol. 59, 158–166.

    Article  PubMed  Google Scholar 

  • Kleinschmidt, J., B. Soeding, M. Teuber, and H. Neve. 1993. Evaluation of horizontal and vertical gene transfer and stability of heterologous DNA in Streptococcus thermophilus isolated from yogurt and yogurt starter cultures. Syst. Appl. Microbiol. 16, 287–295.

    Article  CAS  Google Scholar 

  • Le, T.M., S. Baker, T.P. Le, T.T. Cao, T.T. Tran, V.M. Nguyen, J.I. Campbell, and et al. 2009. High prevalence of plasmid-mediated quinolone resistance determinants in commensal members of the Enterobacteriaceae in Ho Chi Minh City, Vietnam. J. Med. Microbiol. 58, 1585–1592.

    Article  PubMed  Google Scholar 

  • Macfarlane, G.T. and J.H. Cummings. 2002. Probiotics, infection and immunity. Curr. Opin. Infect. Dis. 15, 501–506.

    Article  PubMed  CAS  Google Scholar 

  • Mater, D.D., P. Langella, G. Corthier, and M.J. Flores. 2008. A probiotic Lactobacillus strain can acquire vancomycin resistance during digestive transit in mice. J. Mol. Microbiol. Biotechnol. 14, 123–127.

    Article  PubMed  CAS  Google Scholar 

  • Mathur, S. and R. Singh. 2005. Antibiotic resistance in food lactic acid bacteria-a review. Int. J. Food Microbiol. 105, 281–295.

    Article  PubMed  CAS  Google Scholar 

  • Mayrhofer, S., A.H. van Hoek, C. Mair, G. Huys, H.J. Aarts, W. Kneifel, and K.J. Domig. 2010. Antibiotic susceptibility of members of the Lactobacillus acidophilus group using microdilution and molecular identification of their resistance determinants. Int. J. Food Microbiol. 144, 81–87.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, L.C., R.F. McFeeters, M.A. Daeschel, and H.P. Fleming. 1987. A differential medium for the enumeration of homofermentative and heterofermentative lactic acid bacteria. Appl. Environ. Microbiol. 53, 1382–1384.

    PubMed  CAS  Google Scholar 

  • Ouoba, L.I., V. Lei, and L.B. Jensen. 2008. Resistance of potential probiotic lactic acid bacteria and bifidobacteria of African and European origin to antimicrobials: determination and transferability of the resistance genes to other bacteria. Int. J. Food Microbiol. 121, 217–224.

    Article  PubMed  CAS  Google Scholar 

  • Parvez, S., K.A. Malik, S.A. Kang, and H.Y. Kim. 2006. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 100, 1171–1185.

    Article  PubMed  CAS  Google Scholar 

  • Perreten, V., F. Schwarz, L. Cresta, M. Boeglin, G Dasen, and M. Teuber. 1997. Antibiotic resistance spread in food. Nature 389, 801–802.

    Article  PubMed  CAS  Google Scholar 

  • Smirnova, M.V., S.N. Vostrov, E.V. Strukova, S.A. Dovzhenko, M.B. Kobrin, Y.A. Portnoy, S.H. Zinner, and A.A. Firsov. 2009. The impact of duration of antibiotic exposure on bacterial resistance predictions using in vitro dynamic models. J. Antimicrob. Chemother. 64, 815–820.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan, A., C. Edlund, and C.E. Nord. 2001. Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect. Dis. 1, 101–114.

    Article  PubMed  CAS  Google Scholar 

  • Temmermann, R., B. Pot, G. Huys, and J. Swings. 2002. Identification and antibiotic susceptibility of bacterial isolates from probiotic products. Int. J. Food Microbiol. 81, 1–10.

    Article  Google Scholar 

  • Teuber, M. 2001. Veterinary use and antibiotic resistance. Curr. Opin. Microbiol. 4, 493–499.

    Article  PubMed  CAS  Google Scholar 

  • Vester, B. and S. Douthwaite. 2001. Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob. Agents Chemother. 45, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Walter, J., G.W. Tannock, A. Tilsala-Timisjiarvi, S. Rodtong, D.M. Loach, K. Munro, and T. Alatossava. 2000. Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. Appl. Environ. Microbiol. 66, 297–303.

    Article  PubMed  CAS  Google Scholar 

  • Zonenschain, D., A. Rebecchi, and L. Morelli. 2009. Erythromycin-and tetracycline-resistant lactobacilli in Italian fermented dry sausages. J. Appl. Microbiol. 107, 1559–1568.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Drago.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drago, L., Mattina, R., Nicola, L. et al. Macrolide resistance and In Vitro selection of resistance to antibiotics in Lactobacillus isolates. J Microbiol. 49, 651–656 (2011). https://doi.org/10.1007/s12275-011-0470-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-011-0470-1

Keywords

Navigation