Skip to main content
Log in

The effect of lipid supplements on ruminal bacteria in continuous culture fermenters varies with the fatty acid composition

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

A single flow continuous culture fermenter system was used in this study to investigate the influence of dietary lipid supplements varying in their fatty acid content on the DNA concentration of selected rumen bacteria. Four continuous culture fermenters were used in a 4×4 Latin square design with four periods of 10 d each. Treatment diets were fed at 45 g/d (DM basis) in three equal portions during the day. The diets were: 1) control (CON), 2) control with animal fat source (SAT), 3) control with soybean oil (SBO), and 4) control with fish oil (FO). Lipid supplements were added at 3% of diet DM. The concentrations of total volatile fatty acids and acetate were not affected (P>0.05) by lipid supplements. Concentrations of propionate, iso-butyrate, valerate and iso-valerate were highest (P<0.05) with the FO diet compared with the other treatment diets. The concentration of til C18:l (vaccenic acid, VA) in effluents increased (P<0.05) with SBO and FO diets and was highest with the SBO diet. The concentrations of C18:0 in effluents were lowest (P<0.05) for the FO diet compared with the other treatment diets. Concentrations of DNA for Anaerovibrio lipolytica, and Butyrivibrio proteoclasticus in fermenters were similar (P>0.05) for all diets. The DNA concentrations of Butyrivibrio fibrisolvens and Ruminococcus albus in fermenters were lowest (P<0.05) with the FO diet but were similar (P>0.05) among the other treatment diets. Selenomonas ruminantium DNA concentration in fermenters was highest (P<0.05) with the FO diet. In conclusion, SBO had no effect on bacterial DNA concentrations tested in this study and the VA accumulation in the rumen observed on the FO diet may be due in part to FO influence on B. fibrisolvens, R. albus, and S. ruminantium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AbuGhazaleh, A.A., S. Abo El-Nor, and S.A. Ibrahim. 2011. The effect of replacing corn with glycerol on ruminal bacteria in continuous culture fermenters. J. Anim. Physiol. Anim. Nutr. In press.

  • AbuGhazaleh, A.A. and W.R. Buckles. 2007. The effect of solid dilution rate and lipid source on trans-C18:1 and conjugated linoleic acid production by ruminal microbes in continuous culture. J. Dairy Sci. 90, 963–969.

    Article  PubMed  CAS  Google Scholar 

  • AbuGhazaleh, A.A. and B.N. Jacobson. 2007. Production of trans C18:1 and conjugated linoleic acid in continuous culture fermenters fed diets containing fish oil and sunflower oil with decreasing levels of forage. Animal 1, 660–665.

    Article  CAS  Google Scholar 

  • AbuGhazaleh, A.A. and T.C. Jenkins. 2004. Disappearance of docosahexaenoic and eicosapentaenoic acids from cultures of mixed ruminal microorganisms. J. Dairy Sci. 87, 645–651.

    Article  PubMed  CAS  Google Scholar 

  • AbuGhazaleh, A.A., D.J. Schingoethe, A.R. Hippen, and L.A. Whitlock. 2002. Feeding fish meal and extruded soybeans enhances the conjugated linoleic acid (CLA) content of milk. J. Dairy Sci. 85, 624–631.

    Article  CAS  Google Scholar 

  • Boeckaert, C., V. Fievez, D.V. Hecke, W. Verstraete, and N. Boon. 2007a. Changes in rumen biohydrogenation intermediates and ciliate protozoa diversity after algae supplementation to dairy cattle. Eur. J. Lipid Sci. Technol. 109, 767–777.

    Article  CAS  Google Scholar 

  • Boeckaert, C., B. Vlaeminck, V. Fievez, L. Maignien, J. Dijkstra, and N. Boon. 2008. Accumulation of trans C18:1 fatty acids in the rumen after dietary algal supplementation is associated with changes in the Butyrivibrio community. Appl. Environ. Microbiol. 74, 6923–6930.

    Article  PubMed  CAS  Google Scholar 

  • Boeckaert, C., B. Vlaeminck, J. Mestdagh, and V. Fievez. 2007b. In vitro examination of DHA-edible micro algae 1. Effect on rumen lipolysis and biohydrogenation of linoleic and linolenic acids. Anim. Feed Sci. Technol. 136, 63–79.

    Article  CAS  Google Scholar 

  • Chen, J. and W. Weimer. 2001. Competition among three predominant ruminal cellulolytic bacteria in the absence or presence of non-cellulolytic bacteria. Microbiology 147, 21–30.

    PubMed  CAS  Google Scholar 

  • Christina, D.M., D.M. Pacheco, W. Kelly, S.C. Leahy, D. Li, J. Kopecny, and G.T. Attwood. 2008. Reclassification of Clostridium proteoclasticum as Butyrivibrio proteoclasticus comb. nov., a butyrate-producing ruminal bacterium. Int. J. Syst. Evol. Microbiol. 58, 2041–2045.

    Article  Google Scholar 

  • Craig, W.M., G.A. Broderick, and D.B. Ricker. 1987. Quantitation of microorganisms associated with the particulate phase of ruminal ingesta. J. Nutr. 117, 56–62.

    PubMed  CAS  Google Scholar 

  • Czerkawski, J.W. 1976. Chemical composition of microbial matter in the rumen. J. Sci. Food Agri. 27, 621–632.

    Article  CAS  Google Scholar 

  • Griinari, J.M., B.A. Corl, S.H. Lacy, P.Y. Chouinard, K.V. Nurmela, and D.E. Bauman. 2000. Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by delta(9)-desaturase. J. Nutr. 130, 2285–2291.

    PubMed  CAS  Google Scholar 

  • Harfoot, C.G. and G.P. Hazlewood. 1997. The rumen microbial ecosystem, pp. 382–426. In P.N. Hobson and C.S. Stewart (eds.), Lipid Metabolism in the Rumen. Blackie and Prof., London, UK.

    Google Scholar 

  • Huws, S.A., E.J. Kim, M.R.F. Lee, E. Pinloche, R.J. Wallace, and N.D. Scollan. 2008. Understanding the role of bacteria in the biohydrogenation pathways within the rumen. Abstr. pp. 41. Gut Microbiome Symp., Clermont-Ferrand, France.

  • Jenkins, T.C. 1987. Effect of fats and fatty acid combinations on ruminal fermentation in semi-continuous in vitro cultures. J. Anim. Sci. 64, 1526–1532.

    PubMed  CAS  Google Scholar 

  • Jenkins, T.C., V. Fellner, and R.K. McGuffey. 2003. Monensin by fat Interactions on trans fatty acids in cultures of mixed ruminal microorganisms grown in continuous fermentors fed corn or barley. J. Dairy Sci. 86, 324–330.

    Article  PubMed  CAS  Google Scholar 

  • Karnati, S.K.R., J.T. Sylvester, C.V.D.M. Ribeiro, L.E. Gilligan, and J.L. Firkins. 2009. Investigating unsaturated fat, monensin, or bromoethanesulfonate in continuous cultures retaining ruminal protozoa. I. Fermentation, biohydrogenation, and microbial protein synthesis. J. Dairy Sci. 92, 3849–3860.

    Article  PubMed  CAS  Google Scholar 

  • Keweloh, H. and H.J. Heipieper. 1996. Trans unsaturated fatty acids in bacteria. Lipids 31, 129–137.

    Article  PubMed  CAS  Google Scholar 

  • Kim, E.J., S.A. Huws, M.R.F. Lee, J.D. Wood, S.M. Muetzel, R.J. Wallace, and N.D. Scollan. 2008. Fish oil increases the duodenal flow of long chain polyunsaturated fatty acids and trans-11 18:1 and decreases 18:0 in steers via changes in the rumen bacterial community. J. Nutr. 138, 889–896.

    PubMed  CAS  Google Scholar 

  • Kramer, J.K.G., V. Fellner, M.E.R. Dugan, F.D. Sauer, M.M. Mosoba, and M.P. Yurawecz. 1997. Evaluating acid and base catalysts in the methylation of milk and rumen fatty acids with special emphasis on conjugated dienes and total trans fatty acids. Lipids 32, 1219–1228.

    Article  PubMed  CAS  Google Scholar 

  • Kucuk, O., B.W. Hess, and D.C. Rule. 2008. Fatty acid compositions of mixed ruminal microbes isolated from sheep supplemented with soybean oil. Res. Veteri. Sci. 84, 215–224.

    Article  CAS  Google Scholar 

  • Kudo, H., K.J. Cheng, and J.W. Costerton. 1987. Interactions between Treponema bryantii and cellulolytic bacteria in the in vitro digestion of straw cellulose. Can. J. Microbiol. 33, 241–248.

    Google Scholar 

  • Lee, M.R.F., K.J. Shingfield, J.K.S. Tweed, V. Toivonen, S.A. Huws, and N.D. Scollan. 2008. Effect of fish oil on ruminal biohydrogenation of C18 unsaturated fatty acids in steers fed grass or red clover silages. Animal 2, 1859–1869.

    Article  CAS  Google Scholar 

  • Loor, J.J., A.B.P.A. Bandara, and J.H. Herbein. 2002. Characterization of 18:1 and 18:2 isomers produced during microbial biohydrogenation of unsaturated fatty acids from canola and soya bean oil in the rumen of lactating cows. J. Anim. Physiol. Anim. Nutr. 86, 422–432.

    Article  CAS  Google Scholar 

  • Loor, J.J., M. Doreau, J.M. Chardigny, A. Ollier, J.L. Sebedio, and Y. Chilliard. 2005. Effects of ruminal or duodenal supply of fish oil on milk fat secretion and profiles of trans-fatty acids and conjugated linoleic acid isomers in dairy cows fed maize silage. Anim. Feed Sci. Technol. 119, 227–246.

    Article  CAS  Google Scholar 

  • Maczulak, A.E., B.A. Dehority, and D.L. Palmquist. 1981. Effects of long-chain fatty acids on growth of rumen bacteria. Appl. Environ. Microbiol. 42, 856–862.

    PubMed  CAS  Google Scholar 

  • Maia, M.R., L.C. Chaudhary, L. Figueres, and R.J. Wallace. 2007. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie van Leeuwenhoek 91, 303–314.

    Article  PubMed  CAS  Google Scholar 

  • Maia, M.R., L.C. Chaudhary, C.S. Bestwick, A.J. Richardson, N. McKain, T.R. Larson, I.A. Graham, and R.J. Wallace. 2010. Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens. BMC Microbiology 10, 52.

    Article  PubMed  Google Scholar 

  • McAllister, T.A., H.D. Bae, G.A. Jones, and K.J. Cheng. 1994. Microbial attachment and feed digestion in the rumen. J. Anim. Sci. 72, 3004–3018.

    PubMed  CAS  Google Scholar 

  • Mosley, E.E., B. Shafii, P.J. Moate, and M.A. McGuire. 2006. cis-9, trans-11 conjugated linoleic acid is synthesized directly from vaccenic acid in lactating dairy cattle. J. Nutr. 136, 570–575.

    PubMed  CAS  Google Scholar 

  • Nam, I.S. and P.C. Garnsworthy. 2007. Biohydrogenation of linoleic acid by rumen fungi compared with rumen bacteria. J. Appl. Microbiol. 103, 551–556.

    Article  PubMed  CAS  Google Scholar 

  • Or-Rashid, M.M. and O. Alzahal. 2008. Studies on the production of conjugated linoleic acid from linoleic and vaccenic acids by mixed rumen protozoa. Appl. Microbiol. Biotechnol. 81, 533–541.

    Article  PubMed  CAS  Google Scholar 

  • Paillard, D., N. McKain, L.C. Chaudhary, N.D. Walker, F. Pizette, I. Koppova, N.R. McEwan, and et al. 2007a. Relation between phylogenetic position, lipid metabolism and butyrate production by different Butyrivibrio-like bacteria from the rumen. Antonie van Leeuwenhoek 91, 417–422.

    Article  PubMed  CAS  Google Scholar 

  • Paillard, D., N. McKain, M.T. Rincon, K.J. Shingfield, D.I. Givens, and R.J. Wallace. 2007b. Quantification of ruminal Clostridium proteoclasticum by real-time PCR using a molecular beacon approach. J. Appl. Microbiol. 103, 1251–1261.

    Article  PubMed  CAS  Google Scholar 

  • Parodi, P.W. 2003. Conjugated linoleic acid in food, pp. 101–122. In J.L. Sébédio, W.W. Christie, and R. Adlof (eds.), Advances in Conjugated Linoleic Acid Research, Vol. II. AOCS Press, Champaign, IL, USA.

    Google Scholar 

  • Prins, R.A., A. Lankhorst, P. van der Meer, and C.J. Van Nevel. 1975. Some characteristics of Anaerovibrio lipolytica, a rumen lipolytic organism. Antonie van Leeuwenhoek 41, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Reilly, K. and G.T. Attwood. 1998. Detection of Clostridium proteoclasticum and closely related strains in the rumen by competitive PCR. Appl. Environ. Microbiol. 64, 907–913.

    PubMed  CAS  Google Scholar 

  • Tajima, K., R.I. Aminov, T. Nagamine, H. Matsui, M. Nakamura, and Y. Benno. 2001. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl. Environ. Microbiol. 67, 2766–2774.

    Article  PubMed  CAS  Google Scholar 

  • Teather, R.M. and F.D. Sauer. 1988. A naturally compartmented rumen simulation system for the continuous culture of rumen bacteria and protozoa. J. Dairy Sci. 71, 666–673.

    Article  CAS  Google Scholar 

  • van de Vossenberg, J.L. and K.N. Joblin. 2003. Biohydrogenation of C18 unsaturated fatty acids to stearic acid by a strain of Butyrivibrio hungatei from the bovine rumen. Lett. Appl. Microbiol. 37, 424–428.

    Article  PubMed  Google Scholar 

  • Varadyova, Z., S. Kišidayova, P. Siroka, and D. Jalč. 2007. Fatty acid profiles of rumen fluid from sheep fed diets supplemented with various oils and effect on the rumen ciliate population. Czech. J. Anim. Sci. 52, 399–406.

    CAS  Google Scholar 

  • Vlaeminck, B., G. Mengistu, V. Fievez, L. de Jonge, and J. Dijkstra. 2008. Effect of in vitro docosahexaenoic acid supplementation to marine algae-adapted and unadapted rumen inoculum on the biohydrogenation of unsaturated fatty acids in freeze-dried grass. J. Dairy Sci. 91, 1122–1132.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, R.J., L.C. Chaudhary, N. McKain, N.R. McEwan, A.J. Richardson, P.E. Vercoe, N.D. Walker, and D. Paillard. 2006. Clostridium proteoclasticum: a ruminal bacterium that forms stearic acid from linoleic acid. FEMS Microbiol. Lett. 265, 195–201.

    Article  CAS  Google Scholar 

  • Wasowska, I., M.R.G. Maia, K.M. Niedz’wiedzka, M. Czauderna, J.M.C. Ramalho Ribeiro, E. Devillard, K.J. Shingfield, and J.R. Wallace. 2006. IInfluence of fish oil on ruminal biohydrogenation of C18 unsaturated fatty acids. Br. J. Nutr. 95, 1199–1211.

    Article  PubMed  CAS  Google Scholar 

  • Weller, R.A. and A.F. Pilgrim. 1974. Passage of protozoa and volatile fatty acids from the rumen sheep and from a continuous in vitro fermentation system. Br. J. Nutr. 32, 341–352.

    Article  PubMed  CAS  Google Scholar 

  • Yang, S.L., D.P. Bu, J.Q. Wang, Z.Y. Hu, D. Li, H.Y. Wei, L.Y. Zhou, and J.J. Loor. 2009. Soybean oil and linseed oil supplementation affect profiles of ruminal microorganism in dairy cows. Animal 11, 1562–1569.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amer A. AbuGhazaleh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potu, R.B., AbuGhazaleh, A.A., Hastings, D. et al. The effect of lipid supplements on ruminal bacteria in continuous culture fermenters varies with the fatty acid composition. J Microbiol. 49, 216–223 (2011). https://doi.org/10.1007/s12275-011-0365-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-011-0365-1

Keywords

Navigation