Skip to main content
Log in

Gene expression profile of Helicobacter pylori in response to growth temperature variation

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

A Helicobacter pylori whole-genome DNA microarray was constructed to study expression profiles of H. pylori in response to a sudden temperature transfer from 37°C to 20°C. The expression level of the genome at each of four time points (15, 30, 60, and 120 min) after temperature downshift was compared with that just before cold treatment. Globally, 10.2 % (n=167) of the total predicted H. pylori genes (n=1636) represented on the microarray were significantly differentially expressed (p<0.05) over a 120 min period after shift to low temperature. The expression profiles of the differentially expressed genes were grouped, and their expression patterns were validated by quantitative real-time PCR. Up-regulated genes mainly included genes involved in energy metabolism and substance metabolism, cellular processes, protein fate, ribosomal protein genes, and hypothetical protein genes, which indicate the compensational responses of H. pylori to temperature downshift. Those genes play important roles in adaption to temperature downshift of H. pylori. Down-regulation of DNA metabolism genes and cell envelope genes and cellular processes genes may reflect damaged functions under low temperature, which is unfavorable to bacterial infection and propagation. Overall, this time-course study provides new insights into the primary response of H. pylori to a sudden temperature downshift, which allow the bacteria to survive and adapt to the new host environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez-Ordóñez, A., A. Fernández, M. López, R. Arenas, and A. Bernardo. 2008. Modifications in membrane fatty acid composition of Salmonella typhimurium in response to growth conditions and their effect on heat resistance. Int. J. Food Microbiol. 123, 212–219.

    Article  PubMed  Google Scholar 

  • Arsene, F., T. Tomoyasu, and B. Bukau. 2000. The heat shock response of Escherichia coli. Int. J. Food Microbiol. 55, 3–9.

    Article  PubMed  CAS  Google Scholar 

  • Beckering, C.L., L. Steil, M.H. Weber, U. Volker, and M.A. Marahiel. 2002. Genome-wide transcriptional analysis of the cold shock response in Bacillus subtilis. J. Bacteriol. 184, 6395–6402.

    Article  PubMed  CAS  Google Scholar 

  • Bjorkholm, B.M., J.L. Guruge, J.D. Oh, A.J. Syder, N. Salama, K. Guillemin, S. Falkow, C. Nilsson, P.G. Falk, L. Engstrand, and J.I. Gordon. 2002. Colonization of germ-free transgenic mice with genotyped Helicobacter pylori strains from a case-control study of gastric cancer reveals a correlation between host responses and HsdS components of type I restriction-modification systems. J. Biol. Chem. 277, 34191–34197.

    Article  PubMed  CAS  Google Scholar 

  • Brigulla, M., T. Hoffmann, A. Krisp, A. Völker, E. Bremer, and U. Völker. 2003. Chill induction of the SigB-dependent general stress response in Bacillus subtilis and its contribution to low-temperature adaptation. J. Bacteriol. 185, 4305–4314.

    Article  PubMed  CAS  Google Scholar 

  • Brisslert, M., K. Enarsson, S. Lundin, A. Karlsson, J.G. Kusters, A.M. Svennerholm, S. Backert, and M. Quiding-Jarbrink. 2005. Helicobacter pylori induce neutrophil transendothelial migration: role of the bacterial HP-NAP. FEMS Microbiol. Lett. 249, 95–103.

    Article  PubMed  CAS  Google Scholar 

  • Budde, I., L. Steil, C. Scharf, U. Volker, and E. Bremer. 2006. Adaptation of Bacillus subtilis to growth at low temperature: a combined transcriptomic and proteomic appraisal. Microbiology 152, 831–853.

    Article  PubMed  CAS  Google Scholar 

  • Cooksley, C., P.J. Jenks, A. Green, A. Cockayne, R.P. Logan, and K.R. Hardie. 2003. NapA protects Helicobacter pylori from oxidative stress damage, and its production is influenced by the ferric uptake regulator. J. Med. Microbiol. 52, 461–469.

    Article  PubMed  CAS  Google Scholar 

  • Crapoulet, N., P. Barbry, D. Raoult, and P. Renesto. 2006. Global Transcriptome analysis of Tropheryma whipplei in tesponse to temperature stresses. J. Bacteriol. 188, 5228–5239.

    Article  PubMed  CAS  Google Scholar 

  • Croxen, M.A., G. Sisson, R. Melano, and P.S. Hoffman. 2006. The Helicobacter pylori chemotaxis receptor TlpB (HP0103) is required for pH taxis and for colonization of the gastric mucosa. J. Bacteriol. 188, 2656–2665.

    Article  PubMed  CAS  Google Scholar 

  • De Jonge, R., Z. Durrani, S.G. Rijpkema, E.J. Kuipers, A.H. van Vliet, and J.G. Kusters. 2004. Role of the Helicobacter pylori outer-membrane proteins AlpA and AlpB in colonization of the guinea pig stomach. J. Med. Microbiol. 53, 375–379.

    Article  PubMed  Google Scholar 

  • Derzelle, S., B. Hallet, K.P. Francis, T. Ferain, J. Delcour, and P. Hols. 2000. Changes in cspL, cspP, and cspC mRNA abundance as a function of cold shock and growth phase in Lactobacillus plantarum. J. Bacteriol. 182, 5105–5113.

    Article  PubMed  CAS  Google Scholar 

  • Dietz, P., G. Gerlach, and D. Beier. 2002. Identification of target genes regulated by the two-component system HP166-HP165 of Helicobacter pylori. J. Bacteriol. 184, 350–362.

    Article  PubMed  CAS  Google Scholar 

  • Figura, N., L. Trabalzini, R. Mini, G. Bernardini, A. Scaloni, F. Talamo, P. Lusini, E. Ferro, P. Martelli, and A. Santucci. 2004. Inactivation of Helicobacter pylori cagA gene affects motility. Helicobacter 9, 185–193.

    Article  PubMed  CAS  Google Scholar 

  • Garénaux, A., F. Jugiau, F. Rama, R. de Jonge, M. Denis, M. Federighi, and M. Ritz. 2008. Survival of Campylobacter jejuni strains from different origins under oxidative stress conditions: effect of temperature. Curr. Microbiol. 56, 293–297.

    Article  PubMed  Google Scholar 

  • Graumann, P., K. Schroder, R. Schmid, and M.A. Marahiel. 1996. Cold shock stress-induced proteins in Bacillus subtilis. J. Bacteriol. 178, 4611–4619.

    PubMed  CAS  Google Scholar 

  • Gualerzi, C.O., A.M. Giuliodori, and C.L. Pon. 2003. Transcriptional and post-transcriptional control of cold-shock genes. J. Mol. Biol. 331, 527–539.

    Article  PubMed  CAS  Google Scholar 

  • Han, Y.H., W.Z. Liu, Y.Z. Shi, L.Q. Lu, S.D. Xiao, Q.H. Zhang, and G.P. Zhao. 2007. Comparative genomics profiling of clinical isolates of Helicobacter pylori in Chinese populations using DNA microarray. J. Microbiol. 45, 21–28.

    PubMed  CAS  Google Scholar 

  • Han, Y., D. Zhou, X. Pang, L. Zhang, Y. Song, Z. Tong, J. Bao, E. Dai, J. Wang, Z. Guo, J. Zhai, Z. Du, X. Wang, J. Wang, P. Huang, and R. Yang. 2005. DNA microarray analysis of the heat- and cold-shock stimulons in Yersinia pestis. Microbes Infect. 7, 335–348.

    Article  PubMed  CAS  Google Scholar 

  • Hegarty, J.P., M.T. Dowd, and K.H. Baker. 1999. Occurrence of Helicobacter pylori in surface water in the United States. J. Appl. Microbiol. 87, 697–701.

    Article  PubMed  CAS  Google Scholar 

  • Homuth, G., S. Domm, D. Kleiner, and W. Schumann. 2000. Transcriptional analysis of major heat shock genes of Helicobacter pylori. J. Bacteriol. 182, 4257–4263.

    Article  PubMed  CAS  Google Scholar 

  • Jones, P., G.M. Cashel, G. Glaser, and F.C. Neidhardt. 1992. Function of a relaxed-like state following temperature downshifts in Escherichia coli. J. Bacteriol. 174, 3903–3914.

    PubMed  CAS  Google Scholar 

  • Lee, J.H., M.A. Heo, J.H. Seo, J.H. Kim, B.G. Kim, and S.G. Lee. 2008. Improving the growth rate of Escherichia coli DH5α at low temperature through engineering of GroEL/S chaperone system. Biotechnol. Bioeng. 99, 515–520.

    Article  PubMed  CAS  Google Scholar 

  • Liu, W., L. Du, L. Zhang, J. Chen, X. Shen, and H. Jiang. 2007. Helicobacter pylori acyl carrier protein: expression, purification, and its interaction with beta-hydroxyacyl-ACP dehydratase. Protein Expr. Purif. 52, 74–81.

    Article  PubMed  CAS  Google Scholar 

  • McGee, D.J., M.L. Langford, E.L. Watson, J.E. Carter, Y.T. Chen, and K.M. Ottemann. 2005. Colonization and inflammation deficiencies in Mongolian gerbils infected by Helicobacter pylori chemotaxis mutants. Infect. Immun. 73, 1820–1827.

    Article  PubMed  CAS  Google Scholar 

  • Moreno, Y., M.A. Ferrus, J.L. Alonso, A. Jimenez, and J. Hernandez. 2003. Use of fluorescent in situ hybridization to evidence the presence of Helicobacter pylori in water. Water Res. 37, 2251–2256.

    Article  PubMed  CAS  Google Scholar 

  • Phadtare, S. and M. Inouye. 2004. Genome-wide transcriptional analysis of the cold shock response in wild-type and coldsensitive, quadruple-csp-deletion strains of Escherichia coli. J. Bacteriol. 186, 7007–7014.

    Article  PubMed  CAS  Google Scholar 

  • Rajagopala, S.V., B. Titz, J. Goll, J.R. Parrish, K. Wohlbold, M.T. McKevitt, T. Palzkill, H. Mori, R.L. Finley, Jr., and P. Uetz. 2007. The protein network of bacterial motility. Mol. Syst. Biol. 3, 128.

    Article  PubMed  Google Scholar 

  • Salama, N., K. Guillemin, T.K. McDaniel, G. Sherlock, L. Tompkins, and S. Falkow. 2000. A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains. Proc. Natl. Acad. Sci. USA 97, 14668–14673.

    Article  PubMed  CAS  Google Scholar 

  • Sampathkumar, B., G.G. Khachatourians, and D.R. Korber. 2004. Treatment of Salmonella enterica Serovar Enteritidis with a sublethal concentration of trisodium phosphate or alkaline pH induces thermotolerance. Appl. Environ. Microbiol. 70, 4613–4620.

    Article  PubMed  CAS  Google Scholar 

  • Schilling, C.H., M.W. Covert, I. Famili, G.M. Church, J.S. Edwards, and B.O. Palsson. 2002. Genome-scale metabolic model of Helicobacter pylori 26695. J. Bacteriol. 184, 4582–4593.

    Article  PubMed  CAS  Google Scholar 

  • Schreiber, S., M. Konradt, C. Groll, P. Scheid, G. Hanauer, H.O. Werling, C. Josenhans, and S. Suerbaum. 2004. The spatial orientation of Helicobacter pylori in the gastric mucus. Proc. Natl. Acad. Sci. USA 101, 5024–5029.

    Article  PubMed  CAS  Google Scholar 

  • Schumann, W., M. Hecker, and T. Msadek. 2002. Regulation and function of heat-inducible genes in Bacillus subtilis, p. 359–368. In A.L. Sonenshein, J.A. Hoch, and R. Losick (eds.), Bacillus subtilis and its closest relatives: from genes to cells. ASM Press, Washington, D.C., USA.

    Google Scholar 

  • Smoot, L.M., J.C. Smoot, M.R. Graham, G.A. Somerville, D.E. Sturdevant, C.A. Migliaccio, G.L. Sylva, and J.M. Musser. 2001. Global differential gene expression in response to growth temperature alteration in group A Streptococcus. Proc. Natl. Acad. Sci. USA 98, 10416–10421.

    Article  PubMed  CAS  Google Scholar 

  • Srikhanta, Y.N., T.L. Maguire, K.J. Stacey, S.M. Grimmond, and M.P. Jennings. 2005. The phasevarion: a genetic system controlling coordinated, random switching of expression of multiple genes. Proc. Natl. Acad. Sci. USA 102, 5547–5551.

    Article  PubMed  CAS  Google Scholar 

  • Stintzi, A. 2003. Gene expression profile of Campylobacter jejuni in response to growth temperature variation. J. Bacteriol. 185, 2009–2016.

    Article  PubMed  CAS  Google Scholar 

  • Susin, M.F., R.L. Baldini, F. Gueiros-Filho, and S.L. Gomes. 2006. GroES/GroEL and DnaK/DnaJ have distinct roles in stress responses and during cell cycle progression in Caulobacter crescentu. J. Bacteriol. 188, 8044–8053.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, L.J., D.S. Merrell, B.A. Neilan, H. Mitchell, A. Lee, and S. Falkow. 2003. Gene expression profiling of Helicobacter pylori reveals a growth phase dependent switch in virulence gene expression. Infect. Immun. 71, 2643–2655.

    Article  PubMed  CAS  Google Scholar 

  • VanBogelen, R.A. and F.C. Neidhardt. 1990. Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc. Natl. Acad. Sci. USA 87, 5589–5593.

    Article  PubMed  CAS  Google Scholar 

  • White, S.W., J. Zheng, Y.M. Zhang, and C.O. Rock. 2005. The structural biology of type II fatty acid biosynthesis. Annu. Rev. Biochem. 74, 791–831.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimune, K., A. Galkin, L. Kulakova, T. Yoshimura, and N. Esaki. 2005. Cold-active DnaK of an antarctic psychrotroph Shewanella sp. Ac10 supporting the growth of dnaK-null mutant of Escherichia coli at cold temperatures. Extremophiles 9, 145–150.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X.Y., Y. Yu, P. He, Y.X. Zhang, B.Y. Hu, Y. Yang, Y.X. Nie, X.G. Jiang, G.P. Zhao, and X.K. Guo. 2005. Expression and comparative analysis of genes encoding encoding outer membrane proteins LipL21, LipL32 and OmpL1 in epidemic leptospires. Acta. Biochim. Biophys. Sin. 37, 649–656.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-hua Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Yh., Liu, Wz., Shi, Yz. et al. Gene expression profile of Helicobacter pylori in response to growth temperature variation. J Microbiol. 47, 455–465 (2009). https://doi.org/10.1007/s12275-009-0003-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-009-0003-3

Keywords

Navigation