Skip to main content
Log in

Cold-active DnaK of an Antarctic psychrotroph Shewanella sp. Ac10 supporting the growth of dnaK-null mutant of Escherichia coli at cold temperatures

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Shewanella sp. Ac10 is a psychrotrophic bacterium isolated from the Antarctica that actively grows at such low temperatures as 0°C. Immunoblot analyses showed that a heat-shock protein DnaK is inducibly formed by the bacterium at 24°C, which is much lower than the temperatures causing heat shock in mesophiles such as Escherichia coli. We found that the Shewanella DnaK (SheDnaK) shows much higher ATPase activity at low temperatures than the DnaK of E. coli (EcoDnaK): a characteristic of a cold-active enzyme. The recombinant SheDnaK gene supported neither the growth of a dnaK-null mutant of E. coli at 43°C nor λ phage propagation at an even lower temperature, 30°C. However, the recombinant SheDnaK gene enabled the E. coli mutant to grow at 15°C. This is the first report of a DnaK supporting the growth of a dnaK-null mutant at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alfano C, McMacken R (1989) Heat shock protein-mediated disassembly of nucleoprotein structures is required for the initiation of bacteriophage lambda DNA replication. J Biol Chem 264:10709–10718

    CAS  PubMed  Google Scholar 

  • Arsene F, Tomoyasu T, Bukau B (2000) The heat shock response of Escherichia coli. Int J Food Microbiol 55:3–9

    Article  CAS  PubMed  Google Scholar 

  • Bukau B, Walker GC (1990) Mutations altering heat shock specific subunit of RNA polymerase suppress major cellular defects of E. coli mutants lacking the DnaK chaperone. EMBO J 9:4027–4036

    CAS  PubMed  Google Scholar 

  • Cowing DW, Bradwell JC, Craig EA, Woolford C, Hendrix RW, Gross CA (1985) Consensus sequence for Escherichia coli heat shock gene promoters. Proc Natl Acad Sci USA 82:2679–2683

    CAS  PubMed  Google Scholar 

  • Farr CD, Slepenkov SV, Witt SN (1998) Visualization of a slow, ATP-induced structural transition in the bacterial molecular chaperone DnaK. J Biol Chem 273:9744–9748

    CAS  PubMed  Google Scholar 

  • Ferrer M, Chernikova TN, Yakimov MM, Golyshin PN, Timmis KN (2003) Chaperonins govern growth of Escherichia coli at low temperatures. Nat Biotechnol 21:1266–1267

    CAS  PubMed  Google Scholar 

  • Heidelberg JF, Paulsen IT, Nelson KE, Gaidos EJ, Nelson WC, Read TD, Eisen JA, Seshadri R, Ward N, Methe B, Clayton RA, Meyer T, Tsapin A, Scott J, Beanan M, Brinkac L, Daugherty S, DeBoy RT, Dodson RJ, Durkin AS, Haft DH, Kolonay JF, Madupu R, Peterson JD, Umayam LA, White O, Wolf AM, Vamathevan J, Weidman J, Impraim M, Lee K, Berry K, Lee C, Mueller J, Khouri H, Gill J, Utterback TR, McDonald LA, Feldblyum TV, Smith HO, Venter JC, Nealson KH, Fraser CM (2002) Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat Biotechnol 20:1118–1123

    Article  CAS  PubMed  Google Scholar 

  • Kandror O, Goldberg AL (1997) Trigger factor is induced upon cold shock and enhances viability of Escherichia coli at low temperatures. Proc Natl Acad Sci USA 94:4978–4981

    Article  CAS  PubMed  Google Scholar 

  • Kulakova L, Galkin A, Kurihara T, Yoshimura T, Esaki N (1999) Cold-active serine alkaline protease from the psychrotrophic bacterium Shewanella strain Ac10: gene cloning and enzyme purification and characterization. Appl Environ Microbiol 65:611–617

    CAS  PubMed  Google Scholar 

  • La Terza A, Papa G, Miceli C, Luporini P (2001) Divergence between two Antarctic species of the ciliate Euplotes, E. focardii and E. nobilii, in the expression of heat-shock protein 70 genes. Mol Ecol 10:1061–1067

    Article  PubMed  Google Scholar 

  • Mayer MP (1995) A new set of useful cloning and expression vectors derived from pBlueScript. Gene 163:41–46

    CAS  PubMed  Google Scholar 

  • McCarty JS, Walker GC (1991) DnaK as a thermometer: threonine-199 is site of autophosphorylation and is critical for ATPase activity. Proc Natl Acad Sci USA 88:9513–9517

    CAS  PubMed  Google Scholar 

  • McCarty JS, Walker GC (1994) DnaK mutants defective in ATPase activity are defective in negative regulation of the heat shock response: expression of mutant DnaK proteins results in filamentation. J Bacteriol 176:764–780

    CAS  PubMed  Google Scholar 

  • Michelle LD, Kenneth W (1998) Heat shock response in psychrophilic and psychrotrophic yeast from Antarctica. Extremophiles 2:41–49

    PubMed  Google Scholar 

  • Mogk A, Bukau B, Lutz R, Schumann W (1999) Construction and analysis of hybrid Escherichia coli–Bacillus subtilis dnaK genes. J Bacteriol 181:1971–1974

    CAS  PubMed  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Microbiol Rev 39:144–167

    CAS  Google Scholar 

  • Ohki M, Tamura F, Nishimura S, Uchida H (1986) Nucleotide sequence of the Escherichia coli dnaJ gene and purification of the gene product. J Biol Chem 261:1778–1781

    CAS  PubMed  Google Scholar 

  • Paciorek J, Kardys K, Lobacz B, Wolska KI (1997) Escherichia coli defects caused by null mutations in dnaK and dnaJ genes. Acta Microbiol Pol 46:7–17

    CAS  PubMed  Google Scholar 

  • Paek KH, Walker GC (1987) Escherichia coli dnaK null mutants are inviable at high temperature. J Bacteriol 169:283–290

    CAS  PubMed  Google Scholar 

  • Ratkowsky DA, Lowry RK, McMeekin TA, Stokes AN, Chandler RE (1983) Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J Bacteriol 154:1222–1226

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (eds) (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 1.1–1.110

    Google Scholar 

  • Slepenkov SV, Witt SN (1998) Peptide-induced conformational changes in the molecular chaperone DnaK. Biochemistry 37:16749–16756

    CAS  PubMed  Google Scholar 

  • Szabo A, Langer T, Schroder H, Flanagan J, Bukau B, Hartl FU (1994) The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE. Proc Natl Acad Sci USA 91:10345–10349

    CAS  PubMed  Google Scholar 

  • Tomoyasu T, Ogura T, Tatsuta T, Bukau B (1998) Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Mol Microbiol 30:567–581

    Google Scholar 

  • VanBogelen RA, Acton MA, Neidhardt FC (1987) Induction of the heat shock regulon does not produce thermotolerance in Escherichia coli. Genes Dev 1:525–531

    CAS  PubMed  Google Scholar 

  • Yoshimune K, Yoshimura T, Esaki N (1998) Hsc62, a new DnaK homologue of Escherichia coli. Biochem Biophys Res Commun 250:115–118

    Article  CAS  PubMed  Google Scholar 

  • Yoshimune K, Yoshimura T, Nakayama T, Nishino T, Esaki N (2002) Hsc62, Hsc56, and GrpE, the third Hsp70 chaperone system of Escherichia coli. Biochem Biophys Res Commun 293:1389–1395

    Article  CAS  PubMed  Google Scholar 

  • Zylicz M, Ang D, Liberek K, Georgopoulos C (1989) Initiation of lambda DNA replication with purified host- and bacteriophage-encoded proteins: the role of the dnaK, dnaJ and grpE heat shock proteins. EMBO J 8:1601–1608

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Grant-in-Aid for Scientific Research 09460049 (to N.E.), and Grant-in-Aid for Scientific Research on Priority Areas (B) 13125203 (to N.E.) from the Ministry of Education, Culture, Sports, Science, and Technology, and by the Pioneering Research Project (to T.Y.) in Biotechnology of the Ministry of Agriculture, Forestry, and Fisheries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyoshi Esaki.

Additional information

Communicated by K. Horikoshi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshimune, K., Galkin, A., Kulakova, L. et al. Cold-active DnaK of an Antarctic psychrotroph Shewanella sp. Ac10 supporting the growth of dnaK-null mutant of Escherichia coli at cold temperatures. Extremophiles 9, 145–150 (2005). https://doi.org/10.1007/s00792-004-0429-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-004-0429-9

Keywords

Navigation