Skip to main content
Log in

Atomically dispersed hierarchically ordered porous Fe-N-C single-atom nanozymes for dyes degradation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of novel nanozymes for environmental contamination remediation is a worthwhile research direction. However, most of the reported nanozymes cannot degrade efficiently due to the limitation of the internal active sites not being able to come into direct contact with contaminants. Therefore, we reported Fe-N-C single-atom nanozymes (SAzymes) with atomically dispersed FeN4 active sites anchored on a three-dimensional hierarchically ordered microporous-mesoporous-macroporous nitrogen doped carbon matrix (3DOM Fe-N-C) for the degradation of a targeted environmental pollutant (rhodamine B (RhB)). The three-dimensional (3D) hierarchically ordered porous structure may accelerate mass transfer and improve the accessibility of active sites. This structure and high metal atom utilization endow Fe-N-C SAzyme with enhanced tri-enzyme-mimic activities, comprising oxidase-mimic, peroxidase-mimic, and catalase-mimic activities. Based on its excellent peroxidase-mimic activity, 3DOM Fe-N-C can degrade RhB by hydroxyl radicals (·OH) generated in the presence of hydrogen peroxide. This study provides a new idea for designing porous Fe-N-C SAzymes for environmental contamination remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes(II). Chem. Soc. Rev. 2019, 48, 1004–1076.

    Article  CAS  Google Scholar 

  2. Sharma, T. K.; Ramanathan, R.; Weerathunge, P.; Mohammadtaheri, M.; Daima, H. K.; Shukla, R.; Bansal, V. Aptamer-mediated ‘turn-off/turn-on’ nanozyme activity of gold nanoparticles for kanamycin detection. Chem. Commun. 2014, 50, 15856–15859.

    Article  CAS  Google Scholar 

  3. Liang, X.; Han, L. White peroxidase-mimicking nanozymes: Colorimetric pesticide assay without interferences of O2 and color. Adv. Funct. Mater. 2020, 30, 2001933.

    Article  CAS  Google Scholar 

  4. Li, X. N.; Huang, X.; Xi, S. B.; Miao, S.; Ding, J.; Cai, W. Z.; Liu, S.; Yang, X. L.; Yang, H. B.; Gao, J. J. et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis. J. Am. Chem. Soc. 2018, 140, 12469–12475.

    Article  CAS  Google Scholar 

  5. Gao, L. Z.; Yan, X. Y. Nanozymes: An emerging field bridging nanotechnology and biology. Sci. China Life Sci. 2016, 59, 400–402.

    Article  Google Scholar 

  6. Duan, D. M.; Fan, K. L.; Zhang, D. X.; Tan, S. G.; Liang, M. F.; Liu, Y.; Zhang, J. L.; Zhang, P. H.; Liu, W.; Qiu, X. G. et al. Nanozyme-strip for rapid local diagnosis of Ebola. Biosens. Bioelectron. 2015, 74, 134–141.

    Article  CAS  Google Scholar 

  7. Yang, B. W.; Chen, Y.; Shi, J. L. Nanozymes in catalytic cancer theranostics. Prog. Biochem. Biophys. 2018, 45, 237–255.

    Google Scholar 

  8. Tang, Y.; Qiu, Z. Y.; Xu, Z. B.; Gao, L. Z. Antibacterial mechanism and applications of nanozymes. Prog. Biochem. Biophys. 2018, 45, 118–128.

    Google Scholar 

  9. Wu, J. J. X.; Li, S. R.; Wei, H. Integrated nanozymes: Facile preparation and biomedical applications. Chem. Commun. 2018, 54, 6520–6530.

    Article  CAS  Google Scholar 

  10. Popov, A. L.; Popova, N. R.; Tarakina, N. V.; Ivanova, O. S.; Ermakov, A. M.; Ivanov, V. K.; Sukhorukov, G. B. Intracellular delivery of antioxidant CeO2 nanoparticles via polyelectrolyte microcapsules. ACS Biomater. Sci. Eng. 2018, 4, 2453–2462.

    Article  CAS  Google Scholar 

  11. Jiao, L.; Wu, J. B.; Zhong, H.; Zhang, Y.; Xu, W. Q.; Wu, Y.; Chen, Y. F.; Yan, H. Y.; Zhang, Q. H.; Gu, W. L. et al. Densely isolated FeN4 sites for peroxidase mimicking. ACS Catal. 2020, 10, 6422–6429.

    Article  CAS  Google Scholar 

  12. Chen, M.; Zhou, H.; Liu, X. K.; Yuan, T. W.; Wang, W. Y.; Zhao, C.; Zhao, Y. F.; Zhou, F. Y.; Wang, X.; Xue, Z. G. et al. Single iron site nanozyme for ultrasensitive glucose detection. Small 2020, 16, 2002343.

    Article  CAS  Google Scholar 

  13. Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

    Article  CAS  Google Scholar 

  14. Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.

    Article  CAS  Google Scholar 

  15. Wang, X.; Chen, W. X.; Zhang, L.; Yao, T.; Liu, W.; Lin, Y.; Ju, H. X.; Dong, J. C.; Zheng, L. R.; Yan, W. S. et al. Uncoordinated amine groups of metal-organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. J. Am. Chem. Soc. 2017, 139, 9419–9422.

    Article  CAS  Google Scholar 

  16. Han, A. J.; Wang, B. Q.; Kumar, A.; Qin, Y. J.; Jin, J.; Wang, X. H.; Yang, C.; Dong, B.; Jia, Y.; Liu, J. F. et al. Recent advances for MOF-derived carbon-supported single-atom catalysts. Small Methods 2019, 3, 1800471.

    Article  Google Scholar 

  17. Dang, S.; Zhu, Q. L.; Xu, Q. Nanomaterials derived from metal-organic frameworks. Nat. Rev. Mater. 2018, 3, 17075.

    Article  CAS  Google Scholar 

  18. Dutta, S.; Kumari, N.; Dubbu, S.; Jang, S. W.; Kumar, A.; Ohtsu, H.; Kim, J.; Cho, S. H.; Kawano, M.; Lee, I. S. Highly mesoporous metal-organic frameworks as synergistic multimodal catalytic platforms for divergent cascade reactions. Angew. Chem., Int. Ed. 2020, 59, 3416–3422.

    Article  CAS  Google Scholar 

  19. Wang, J. P.; Han, G. K.; Wang, L. G.; Du, L.; Chen, G. Y.; Gao, Y. Z.; Ma, Y. L.; Du, C. Y.; Cheng, X. Q.; Zuo, P. J. et al. ZIF-8 with ferrocene encapsulated: A promising precursor to single-atom Fe embedded nitrogen-doped carbon as highly efficient catalyst for oxygen electroreduction. Small 2018, 14, 1704282.

    Article  Google Scholar 

  20. Lai, Q. X.; Zheng, L. R.; Liang, Y. Y.; He, J. P.; Zhao, J. X.; Chen, J. H. Metal-organic-framework-derived Fe-N/C electrocatalyst with five-coordinated Fe-Nx sites for advanced oxygen reduction in acid media. ACS Catal. 2017, 7, 1655–1663.

    Article  CAS  Google Scholar 

  21. Xiao, F.; Xu, G. L.; Sun, C. J.; Xu, M. J.; Wen, W.; Wang, Q.; Gu, M.; Zhu, S. Q.; Li, Y. Y.; Wei, Z. D. et al. Nitrogen-coordinated single iron atom catalysts derived from metal organic frameworks for oxygen reduction reaction. Nano Energy 2019, 61, 60–68.

    Article  CAS  Google Scholar 

  22. Ye, Y. F.; Cai, F.; Li, H. B.; Wu, H. H.; Wang, G. X.; Li, Y. S.; Miao, S.; Xie, S. H.; Si, R.; Wang, J. et al. Surface functionalization of ZIF-8 with ammonium ferric citrate toward high exposure of Fe-N active sites for efficient oxygen and carbon dioxide electroreduction. Nano Energy 2017, 38, 281–289.

    Article  CAS  Google Scholar 

  23. Zhang, X. B.; Han, X.; Jiang, Z.; Xu, J.; Chen, L. N.; Xue, Y. K.; Nie, A. M.; Xie, Z. X.; Kuang, Q.; Zheng, L. S. Atomically dispersed hierarchically ordered porous Fe-N-C electrocatalyst for high performance electrocatalytic oxygen reduction in Zn-air battery. Nano Energy 2020, 71, 104547.

    Article  CAS  Google Scholar 

  24. Qiao, M. F.; Wang, Y.; Wang, Q.; Hu, G. Z.; Mamat, X.; Zhang, S. S.; Wang, S. Y. Hierarchically ordered porous carbon with atomically dispersed FeN4 for ultraefficient oxygen reduction reaction in proton-exchange membrane fuel cells. Angew. Chem., Int. Ed. 2020, 59, 2688–2694.

    Article  CAS  Google Scholar 

  25. Guo, Y. C.; Feng, L.; Wu, C. C.; Wang, X. M.; Zhang, X. Confined pyrolysis transformation of ZIF-8 to hierarchically ordered porous Zn-N-C nanoreactor for efficient CO2 photoconversion under mild conditions. J. Catal. 2020, 390, 213–223.

    Article  CAS  Google Scholar 

  26. Shen, K.; Zhang, L.; Chen, X. D.; Liu, L. M.; Zhang, D. L.; Han, Y.; Chen, J. Y.; Long, J. L.; Luque, R.; Li, Y. W. et al. Ordered macro-microporous metal-organic framework single crystals. Science 2018, 359, 206–210.

    Article  CAS  Google Scholar 

  27. Zhang, Z. P.; Dou, M. L.; Liu, H. J.; Dai, L. M.; Wang, F. A facile route to bimetal and nitrogen-codoped 3D porous graphitic carbon networks for efficient oxygen reduction. Small 2016, 12, 4193–4199.

    Article  CAS  Google Scholar 

  28. Yang, J.; Zhang, R. F.; Zhao, H. Q.; Qi, H. F.; Li, J. Y.; Li, J. F.; Zhou, X. Y.; Wang, A. Q.; Fan, K. L.; Yan, X. Y. et al. Bioinspired copper single-atom nanozyme as a superoxide dismutase-like antioxidant for sepsis treatment. Exploration 2022, 2, 20210267.

    Article  Google Scholar 

  29. Pachfule, P.; Shinde, D.; Majumder, M.; Xu, Q. Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework. Nat. Chem. 2016, 8, 718–724.

    Article  CAS  Google Scholar 

  30. Zhang, H. G.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Karakalos, S.; Luo, L. L.; Qiao, Z.; Xie, X. H.; Wang, C. M.; Su, D. et al. Single atomic iron catalysts for oxygen reduction in acidic media: Particle size control and thermal activation. J. Am. Chem. Soc. 2017, 139, 14143–14149.

    Article  CAS  Google Scholar 

  31. Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63–72.

    Article  CAS  Google Scholar 

  32. Wan, X.; Liu, X. F.; Li, Y. C.; Yu, R. H.; Zheng, L. R.; Yan, W. S.; Wang, H.; Xu, M.; Shui, J. L. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2019, 2, 259–268.

    Article  CAS  Google Scholar 

  33. Alizadeh, N.; Salimi, A.; Sham, T. K.; Bazylewski, P.; Fanchini, G.; Fathi, F.; Soleimani, F. Hierarchical Co(OH)2/FeOOH/WO3 ternary nanoflowers as a dual-function enzyme with pH-switchable peroxidase and catalase mimic activities for cancer cell detection and enhanced photodynamic therapy. Chem. Eng. J. 2021, 417, 129134.

    Article  CAS  Google Scholar 

  34. Yang, W. N.; Li, J.; Lyu, Y.; Yan, X. H.; Yang, P.; Zuo, M. Bioinspired 3D hierarchical BSA-NiCo2O4@MnO2/C multifunctional micromotors for simultaneous spectrophotometric determination of enzyme activity and pollutant removal. J. Cleaner Prod. 2021, 309, 127294.

    Article  CAS  Google Scholar 

  35. Ni, P. J.; Liu, S. Y.; Wang, B.; Chen, C. X.; Jiang, Y. Y.; Zhang, C. H.; Chen, J. B.; Lu, Y. Z. Light-responsive Au nanoclusters with oxidase-like activity for fluorescent detection of total antioxidant capacity. J. Hazard. Mater. 2021, 411, 125106.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the support from the Ministry of Science and Technology of China (Nos. 2016YFA0203203 and 2019YFA0709202) and the National Natural Science Foundation of China (No. 22074137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojun Dong.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Wu, W., Zhu, X. et al. Atomically dispersed hierarchically ordered porous Fe-N-C single-atom nanozymes for dyes degradation. Nano Res. 16, 10840–10847 (2023). https://doi.org/10.1007/s12274-023-5847-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5847-z

Keywords

Navigation