Skip to main content
Log in

Large π-conjugated indium-based metal-organic frameworks for high-performance electrochemical conversion of CO2

  • Communication
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The active site engineering of electrocatalysts, as one of the most economical and technological approaches, is a promising strategy to enhance the intrinsic activity and selectivity towards electrochemical CO2 reduction reaction. Herein, an indium-based porphyrin framework (In-TCPP) with a well-defined structure, highly dispersed catalytic center, and good stability was constructed for efficient CO2-to-formate conversion. In-TCPP could achieve a high Faraday efficiency for formate (90%) and a cathodic energy efficiency of 63.8% in flow cells. In situ attenuated total reflectance Fourier transform infrared spectroscopy and density functional theory calculation confirm that the crucial intermediate is *COOH species which contributes to the formation of formate. This work is expected to provide novel insights into the precise design of active sites for high-performance electrocatalysts towards electrochemical CO2 reduction reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202215136.

    CAS  Google Scholar 

  2. Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating n-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

    CAS  Google Scholar 

  3. Ma, W. C.; Xie, S. J.; Liu, T. T.; Fan, Q. Y.; Ye, J. Y.; Sun, F. F.; Jiang, Z.; Zhang, Q. H.; Cheng, J.; Wang, Y. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C−C coupling over fluorine-modified copper. Nat. Catal. 2020, 3, 478–487.

    CAS  Google Scholar 

  4. Ren, S. X.; Joulié, D.; Salvatore, D.; Torbensen, K.; Wang, M.; Robert, M.; Berlinguette, C. P. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 2019, 365, 367–369.

    CAS  Google Scholar 

  5. De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. What would it take for renewably powered electrosynthesis to displace petrochemical processes. Science 2019, 364, eaav3506.

    CAS  Google Scholar 

  6. Nguyen, T. N.; Dinh, C. T. Gas diffusion electrode design for electrochemical carbon dioxide reduction. Chem. Soc. Rev. 2020, 49, 7488–7504.

    CAS  Google Scholar 

  7. Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E. A.; Fuss, S.; Mac Dowell, N.; Minx, J. C.; Smith, P.; Williams, C. K. The technological and economic prospects for CO2 utilization and removal. Nature 2019, 575, 87–97.

    CAS  Google Scholar 

  8. Sun, X. H.; Tuo, Y.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem., Int. Ed. 2021, 60, 23614–23618.

    CAS  Google Scholar 

  9. Chu, S. L.; Kang, C.; Park, W.; Han, Y.; Hong, S.; Hao, L. D.; Zhang, H.; Lo, T. W. B.; Robertson, A. W.; Jung, Y. et al. Single atom and defect engineering of CuO for efficient electrochemical reduction of CO2 to C2H4. SmartMat 2022, 3, 194–205.

    CAS  Google Scholar 

  10. Xu, H.; Rebollar, D.; He, H.; Chong, L.; Liu, Y.; Liu, C.; Sun, C.; Li, T.; Muntean, J. V.; Winans, R. E.; Liu, D. -J.; Xu, T. Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat. Energy 2020, 5, 623–632.

    CAS  Google Scholar 

  11. Liu, F.; Fan, Z. X. Defect engineering of two-dimensional materials for advanced energy conversion and storage. Chem. Soc. Rev. 2023, 52, 1723–1772.

    CAS  Google Scholar 

  12. Gu, J. W.; Peng, Y.; Zhou, T.; Ma, J.; Pang, H.; Yamauchi, Y. Porphyrin-based framework materials for energy conversion. Nano Res. Energy 2022, 1, 9120009.

    Google Scholar 

  13. Wang, J.; Zhang, Y. M.; Ma, Y. B.; Yin, J. W.; Wang, Y. H.; Fan, Z. X. Electrocatalytic reduction of carbon dioxide to high-value multicarbon products with metal-organic frameworks and their derived materials. ACS Mater. Lett. 2022, 4, 2058–2079.

    CAS  Google Scholar 

  14. Ahmad, T.; Liu, S.; Sajid, M.; Li, K.; Ali, M.; Liu, L.; Chen, W. Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: A review. Nano Res. Energy 2022, 1, e9120021.

    Google Scholar 

  15. Yang, C. H.; Li, S. Y.; Zhang, Z. C.; Wang, H. Q.; Liu, H. L.; Jiao, F.; Guo, Z. G.; Zhang, X. T.; Hu, W. P. Organic-inorganic hybrid nanomaterials for electrocatalytic CO2 reduction. Small 2020, 16, 2001847.

    CAS  Google Scholar 

  16. Wang, Y. N.; Zheng, Y.; Han, C.; Chen, W. Surface charge transfer doping for two-dimensional semiconductor-based electronic and optoelectronic devices. Nano Res. 2021, 14, 1682–1697.

    Google Scholar 

  17. Yang, C. H.; Gao, Z. Q.; Wang, D. J.; Li, S. Y.; Li, J. J.; Zhu, Y. T.; Wang, H. Q.; Yang, W. J.; Gao, X. J.; Zhang, Z. C. et al. Bimetallic phthalocyanine heterostructure used for highly selective electrocatalytic CO2 reduction. Sci. China Mater. 2022, 65, 155–162.

    CAS  Google Scholar 

  18. Li, J. J.; Abbas, S. U.; Wang, H. Q.; Zhang, Z. C.; Hu, W. P. Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 2021, 13, 216.

    CAS  Google Scholar 

  19. Shi, Y. X.; Hou, M.; Li, J. J.; Li, L.; Zhang, Z. C. Cu-based tandem catalysts for electrochemical CO2 reduction. Acta Phys. -Chim. Sin. 2022, 38, 2206020.

    Google Scholar 

  20. Zhu, Y. T.; Gao, Z. Q.; Zhang, Z. C.; Lin, T.; Zhang, Q. H.; Liu, H. L.; Gu, L.; Hu, W. P. Selectivity regulation of CO2 electroreduction on asymmetric AuAgCu tandem heterostructures. Nano Res. 2022, 15, 7861–7867.

    CAS  Google Scholar 

  21. Ma, Y. B.; Yu, J. L.; Sun, M. Z.; Chen, B.; Zhou, X. C.; Ye, C. L.; Guan, Z. Q.; Guo, W. H.; Wang, G.; Lu, S. Y. et al. Confined growth of silver-copper Janus nanostructures with {100} facets for highly selective tandem electrocatalytic carbon dioxide reduction. Adv. Mater. 2022, 34, 2110607.

    CAS  Google Scholar 

  22. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    CAS  Google Scholar 

  23. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Google Scholar 

  24. Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

    CAS  Google Scholar 

  25. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

    Google Scholar 

  26. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    CAS  Google Scholar 

  27. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Google Scholar 

  28. Rhauderwiek, T.; Waitschat, S.; Wuttke, S.; Reinsch, H.; Bein, T.; Stock, N. Nanoscale synthesis of two Porphyrin-based MOFs with gallium and indium. Inorg. Chem. 2016, 55, 5312–5319.

    CAS  Google Scholar 

  29. Yang, D. R.; Zuo, S. W.; Yang, H. Z.; Zhou, Y.; Wang, X. Freestanding millimeter-scale porphyrin-based monoatomic layers with 0.28 nm thickness for CO2 electrocatalysis. Angew. Chem., Int. Ed. 2020, 59, 18954–18959.

    CAS  Google Scholar 

  30. Tian, Y. B.; Vankova, N.; Weidler, P.; Kuc, A.; Heine, T.; Wöll, C.; Gu, Z. G.; Zhang, J. Oriented growth of in-Oxo chain based metal-porphyrin framework thin film for high-sensitive photodetector. Adv. Sci. 2021, 8, 2100548.

    CAS  Google Scholar 

  31. Zhao, Y. W.; Wang, J. N.; Pei, R. J. Micron-sized ultrathin metal-organic framework sheet. J. Am. Chem. Soc. 2020, 142, 10331–10336.

    CAS  Google Scholar 

  32. Gao, Z. Q.; Wang, C. Y.; Li, J. J.; Zhu, Y. T.; Zhang, Z. C.; Hu, W. P. Conductive metal-organic frameworks for electrocatalysis: Achievements, challenges, and opportunities. Acta Phys. Chim. Sin. 2021, 37, 2010025.

    Google Scholar 

  33. Wang, Z. T.; Zhou, Y. S.; Xia, C. F.; Guo, W.; You, B.; Xia, B. Y. Efficient electroconversion of carbon dioxide to formate by a reconstructed amino-functionalized indium-organic framework electrocatalyst. Angew. Chem., Int. Ed. 2021, 60, 19107–19112.

    CAS  Google Scholar 

  34. Kang, X. C.; Wang, B.; Hu, K.; Lyu, K.; Han, X.; Spencer, B. F.; Frogley, M. D.; Tuna, F.; McInnes, E. J. L.; Dryfe, R. A. W. Quantitative electro-reduction of CO2 to liquid fuel over electro-synthesized metal-organic frameworks. J. Am. Chem. Soc. 2020, 142, 17384–17392.

    CAS  Google Scholar 

  35. Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dualatom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 13388–13393.

    CAS  Google Scholar 

  36. Zeng, G.; He, Y. C.; Ma, D. D.; Luo, S. W.; Zhou, S. H.; Cao, C. S.; Li, X. F.; Wu, X. T.; Liao, H. G.; Zhu, Q. L. Reconstruction of ultrahigh-aspect-ratio crystalline bismuth-organic hybrid nanobelts for selective electrocatalytic CO2 reduction to formate. Adv. Funct. Mater. 2022, 32, 2201125.

    CAS  Google Scholar 

  37. Yao, K. L.; Wang, H. B.; Yang, X. T.; Huang, Y.; Kou, C. D.; Jing, T.; Chen, S. H.; Wang, Z. Y.; Liu, Y. C.; Liang, H. Y. Metal-organic framework derived dual-metal sites for electroreduction of carbon dioxide to HCOOH. Appl. Catal. B: Environ. 2022, 311, 121377.

    CAS  Google Scholar 

  38. Gao, Z. Q.; Li, J. J.; Zhang, Z. C.; Hu, W. P. Recent advances in carbon-based materials for electrochemical CO2 reduction reaction. Chin. Chem. Lett. 2022, 33, 2270–2280.

    CAS  Google Scholar 

  39. Wang, N.; Miao, R. K.; Lee, G.; Vomiero, A.; Sinton, D.; Ip, A. H.; Liang, H. Y.; Sargent, E. H. Suppressing the liquid product crossover in electrochemical CO2 reduction. SmartMat 2021, 2, 12–16.

    CAS  Google Scholar 

  40. Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

    CAS  Google Scholar 

  41. Zhu, S. Q.; Li, T. H.; Cai, W. B.; Shao, M. H. CO2 electrochemical reduction as probed through infrared spectroscopy. ACS Energy Lett. 2019, 4, 682–689.

    CAS  Google Scholar 

  42. Wang, B. Q.; Chen, S. H.; Zhang, Z. D.; Wang, D. S. Low-dimensional material supported single-atom catalysts for electrochemical CO2 reduction. SmartMat 2022, 3, 84–110.

    CAS  Google Scholar 

  43. Zhang, X. Y.; Li, W. J.; Chen, J. C.; Wu, X. F.; Liu, Y. W.; Mao, F. X.; Yuan, H. Y.; Zhu, M. H.; Dai, S.; Wang, H. F. et al. In operando identification of in situ formed metalloid Zincδ+ active sites for highly efficient electrocatalyzed carbon dioxide reduction. Angew. Chem., Int. Ed. 2022, 61, e202202298.

    CAS  Google Scholar 

  44. Tao, Z.; Pearce, A. J.; Mayer, J. M.; Wang, H. Bridge sites of au surfaces are active for electrocatalytic CO2 reduction. J. Am. Chem. Soc. 2022, 144, 8641–8648.

    CAS  Google Scholar 

  45. Fan, K.; Jia, Y. F.; Ji, Y. F.; Kuang, P. Y.; Zhu, B. C.; Liu, X. Y.; Yu, J. G. Curved surface boosts electrochemical CO2 reduction to formate via bismuth nanotubes in a wide potential window. ACS Catal. 2020, 10, 358–364.

    CAS  Google Scholar 

  46. Yao, D. Z.; Tang, C.; Vasileff, A.; Zhi, X.; Jiao, Y.; Qiao, S. Z. The controllable reconstruction of Bi-MOFs for electrochemical CO2 reduction through electrolyte and potential mediation. Angew. Chem., Int. Ed. 2021, 60, 18178–18184.

    CAS  Google Scholar 

  47. Guo, W. H.; Zhang, Y. F.; Su, J. J.; Song, Y.; Huang, L. B.; Cheng, L.; Cao, X. H.; Dou, Y. B.; Ma, Y. B.; Ma, C. Y. et al. Transient solid-state laser activation of indium for high-performance reduction of CO2 to formate. Small 2022, 18, 2201311.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 22071172, 52121002, 51733004, 51725304, and 21907043), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB12030300), and the Ministry of Science and Technology of China (No. 2018YFA0703200). We also acknowledge the support of the Center for Large-scale instrument management platform of Tianjin University and the Analytical and Testing Center of Tianjin University of Technology for XRD, FTIR, XPS, SEM, and TEM measurements. We thank the Haihe Laboratory of Sustainable Chemical Transformations for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuejiao J. Gao, Zhicheng Zhang or Wenping Hu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Gong, Y., Zhu, Y. et al. Large π-conjugated indium-based metal-organic frameworks for high-performance electrochemical conversion of CO2. Nano Res. 16, 8743–8750 (2023). https://doi.org/10.1007/s12274-023-5685-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5685-z

Keywords

Navigation