Skip to main content
Log in

Low-temperature optothermal nanotweezers

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Optical tweezers that rely on laser irradiation to capture and manipulate nanoparticles have provided powerful tools for biological and biochemistry studies. However, the existence of optical diffraction-limit and the thermal damage caused by high laser power hinder the wider application of optical tweezers in the biological field. For the past decade, the emergence of optothermal tweezers has solved the above problems to a certain extent, while the auxiliary agents used in optothermal tweezers still limit their biocompatibility. Here, we report a kind of nanotweezers based on the sign transformation of the thermophoresis coefficient of colloidal particles in low-temperature environment. Using a self-made microfluidic refrigerator to reduce the ambient temperature to around 0 °C in the microfluidic cell, we can control a single nanoparticle at lower laser power without adding additional agent solute in the solution. This novel optical tweezering scheme has provided a new path for the manipulation of inorganic nanoparticles as well as biological particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashkin, A.; Dziedzic, J. M.; Yamane, T. Optical trapping and manipulation of single cells using infrared laser beams. Nature 1987, 330, 769–771.

    CAS  Google Scholar 

  2. Grier, D. G. A revolution in optical manipulation. Nature 2003, 424, 810–816.

    CAS  Google Scholar 

  3. Fränzl, M.; Thalheim, T.; Adler, J.; Huster, D.; Posseckardt, J.; Mertig, M.; Cichos, F. Thermophoretic trap for single amyloid fibril and protein aggregation studies. Nat. Methods 2019, 16, 611–614.

    Google Scholar 

  4. Jiang, H. R.; Wada, H.; Yoshinaga, N.; Sano, M. Manipulation of colloids by a nonequilibrium depletion force in a temperature gradient. Phys. Rev. Lett. 2009, 102, 208301.

    Google Scholar 

  5. Gargiulo, J.; Brick, T.; Violi, I. L.; Herrera, F. C.; Shibanuma, T.; Albella, P.; Requejo, F. G.; Cortés, E.; Maier, S. A.; Stefani, F. D. Understanding and reducing photothermal forces for the fabrication of Au nanoparticle dimers by optical printing. Nano Lett. 2017, 17, 5747–5755.

    CAS  Google Scholar 

  6. Grigorenko, A. N.; Roberts, N. W.; Dickinson, M. R.; Zhang, Y. Nanometric optical tweezers based on nanostructured substrates. Nat. Photonics 2008, 2, 365–370.

    CAS  Google Scholar 

  7. Babynina, A.; Fedoruk, M.; Kühler, P.; Meledin, A.; Döblinger, M.; Lohmüller, T. Bending gold nanorods with light. Nano Lett. 2016, 16, 6485–6490.

    CAS  Google Scholar 

  8. Blázquez-Castro, A. Optical tweezers: Phototoxicity and thermal stress in cells and biomolecules. Micromachines 2019, 10, 507.

    Google Scholar 

  9. Volpe, G.; Quidant, R.; Badenes, G.; Petrov, D. Surface plasmon radiation forces. Phys. Rev. Lett. 2006, 96, 238101.

    Google Scholar 

  10. Min, C. J.; Shen, Z.; Shen, J. F.; Zhang, Y. Q.; Fang, H.; Yuan, G. H.; Du, L. P.; Zhu, S. W.; Lei, T.; Yuan, X. C. Focused plasmonic trapping of metallic particles. Nat. Commun. 2013, 4, 2891.

    Google Scholar 

  11. Zhang, W. H.; Huang, L. N.; Santschi, C.; Martin, O. J. F. Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. Nano Lett. 2010, 10, 1006–1011.

    Google Scholar 

  12. Kang, J. H.; Kim, K.; Ee, H. S.; Lee, Y. H.; Yoon, T. Y.; Seo, M. K.; Park, H. G. Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas. Nat. Commun. 2011, 2, 582.

    Google Scholar 

  13. Pang, Y. J.; Gordon, R. Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film. Nano Lett. 2011, 11, 3763–3767.

    CAS  Google Scholar 

  14. Braun, M.; Cichos, F. Optically controlled thermophoretic trapping of single nano-objects. ACS Nano 2013, 7, 11200–11208.

    CAS  Google Scholar 

  15. Chen, J. J.; Kang, Z. W.; Kong, S. K.; Ho, H. P. Plasmonic random nanostructures on fiber tip for trapping live cells and colloidal particles. Opt. Lett. 2015, 40, 3926–3929.

    CAS  Google Scholar 

  16. Kang, Z. W.; Chen, J. J.; Wu, S. Y.; Chen, K.; Kong, S. K.; Yong, K. T.; Ho, H. P. Trapping and assembling of particles and live cells on large-scale random gold nano-island substrates. Sci. Rep. 2015, 5, 9978.

    CAS  Google Scholar 

  17. Chen, J. J.; Cong, H. J.; Loo, F. C.; Kang, Z. W.; Tang, M. H.; Zhang, H. X.; Wu, S. Y.; Kong, S. K.; Ho, H. P. Thermal gradient induced tweezers for the manipulation of particles and cells. Sci. Rep. 2016, 6, 35814.

    CAS  Google Scholar 

  18. Lin, L. H.; Hill, E. H.; Peng, X. L.; Zheng, Y. B. Optothermal manipulations of colloidal particles and living cells. Acc. Chem. Res. 2018, 51, 1465–1474.

    CAS  Google Scholar 

  19. Lin, L. H.; Wang, M. S.; Peng, X. L.; Lissek, E. N.; Mao, Z. M.; Scarabelli, L.; Adkins, E.; Coskun, S.; Unalan, H. E.; Korgel, B. A. Opto-thermoelectric nanotweezers. Nat. Photonics 2018, 12, 195–201.

    CAS  Google Scholar 

  20. Chen, J. J.; Loo, J. F. C.; Wang, D. P.; Zhang, Y.; Kong, S. K.; Ho, H. P. Thermal optofluidics: Principles and applications. Adv. Opt. Mater. 2020, 8, 1900829.

    CAS  Google Scholar 

  21. Fränzl, M.; Cichos, F. Hydrodynamic manipulation of nano-objects by optically induced thermo-osmotic flows. Nat. Commun. 2022, 13, 656.

    Google Scholar 

  22. Wang, X. Y.; Yuan, Y. Q.; Xie, X.; Zhang, Y. Q.; Min, C. J.; Yuan, X. C. Graphene-based opto-thermoelectric tweezers. Adv. Mater. 2022, 34, 2107691.

    CAS  Google Scholar 

  23. Würger, A. Thermal non-equilibrium transport in colloids. Rep. Prog. Phys. 2010, 73, 126601.

    Google Scholar 

  24. Lin, L. H.; Peng, X. L.; Mao, Z. M.; Wei, X. L.; Xie, C.; Zheng, Y. B. Interfacial-entropy-driven thermophoretic tweezers. Lab Chip 2017, 17, 3061–3070.

    CAS  Google Scholar 

  25. Li, J. G.; Chen, Z. H.; Liu, Y. R.; Kollipara, P. S.; Feng, Y. C.; Zhang, Z. L.; Zheng, Y. B. Opto-refrigerative tweezers. Sci. Adv. 2021, 7, eabh1101.

    CAS  Google Scholar 

  26. Zhou, J. X.; Dai, X. Q.; Jia, B. L.; Qu, J. L.; Ho, H. P.; Gao, B. Z.; Shao, Y. H.; Chen, J. J. Nanorefrigerative tweezers for optofluidic manipulation. Appl. Phys. Lett. 2022, 120, 163701.

    CAS  Google Scholar 

  27. Roder, P. B.; Smith, B. E.; Zhou, X. Z.; Crane, M. J.; Pauzauskie, P. J. Laser refrigeration of hydrothermal nanocrystals in physiological media. Proc. Natl. Acad. Sci. USA 2015, 112, 15024–15029.

    CAS  Google Scholar 

  28. Rahman, A. T. M. A.; Barker, P. F. Laser refrigeration, alignment and rotation of levitated Yb3+: YLF nanocrystals. Nat. Photonics 2017, 11, 634–638.

    CAS  Google Scholar 

  29. Duhr, S.; Braun, D. Why molecules move along a temperature gradient. Proc. Natl. Acad. Sci. USA 2006, 103, 19678–19682.

    CAS  Google Scholar 

  30. Hansen, P. M.; Bhatia, V. K.; Harrit, N.; Oddershede, L. Expanding the optical trapping range of gold nanoparticles. Nano Lett. 2005, 5, 1937–1942.

    CAS  Google Scholar 

  31. De Groot, S. R.; Mazur, P. Non-Equilibrium Thermodynamics. Am J Phys 2013, 31, 558–559.

    Google Scholar 

  32. Duhr, S.; Braun, D. Thermophoretic depletion follows Boltzmann distribution. Phys. Rev. Lett. 2006, 96, 168301.

    Google Scholar 

  33. Braibanti, M.; Vigolo, D.; Piazza, R. Does thermophoretic mobility depend on particle size. Phys. Rev. Lett. 2008, 100, 108303.

    Google Scholar 

  34. Russel, W. B.; Saville, D. A.; Schowalter, W. R. Colloidal Dispersions; Cambridge University Press: Cambridge, 1991.

    Google Scholar 

  35. Anderson, J. L. Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 1989, 21, 61–99.

    Google Scholar 

  36. Bregulla, A. P.; Würger, A.; Günther, K.; Mertig, M.; Cichos, F. Thermo-osmotic flow in thin films. Phys. Rev. Lett. 2016, 116, 188303.

    Google Scholar 

  37. Donner, J. S.; Baffou, G.; McCloskey, D.; Quidant, R. Plasmon-assisted optofluidics. ACS Nano 2011, 5, 5457–5462.

    CAS  Google Scholar 

  38. Wong, W. P.; Halvorsen, K. The effect of integration time on fluctuation measurements: Calibrating an optical trap in the presence of motion blur. Opt. Express 2006, 14, 12517–12531.

    Google Scholar 

  39. Ding, H. R.; Kollipara, P. S.; Lin, L. H.; Zheng, Y. B. Atomistic modeling and rational design of optothermal tweezers for targeted applications. Nano Res. 2021, 14, 295–303.

    Google Scholar 

  40. Haidacher, D.; Vailaya, A.; Horváth, C. Temperature effects in hydrophobic interaction chromatography. Proc. Natl. Acad. Sci. USA 1996, 93, 2290–2295.

    CAS  Google Scholar 

  41. Southall, N. T.; Dill, K. A.; Haymet, A. D. J. A view of the hydrophobic effect. J. Phys. Chem. B 2002, 106, 521–533.

    CAS  Google Scholar 

  42. Iacopini, S.; Piazza, R. Thermophoresis in protein solutions. Eur. Lett. 2003, 63, 247–253.

    CAS  Google Scholar 

  43. Iacopini, S.; Rusconi, R.; Piazza, R. The “macromolecular tourist”: Universal temperature dependence of thermal diffusion in aqueous colloidal suspensions. Eur. Phys. J. E 2006, 19, 59–67.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 62275164, 61905145, and 62275168), National Key Research and Development Program of China (No. 2022YFA1200116), Guangdong Natural Science Foundation and Province Project (No. 2021A1515011916), and Shenzhen Science and Technology Planning Project (No. ZDSYS20210623092006020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiajie Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Dai, X., Peng, Y. et al. Low-temperature optothermal nanotweezers. Nano Res. 16, 7710–7715 (2023). https://doi.org/10.1007/s12274-023-5659-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5659-1

Keywords

Navigation