Skip to main content

Advertisement

Log in

Nanomaterials disrupting cell-cell junctions towards various diseases

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As the continuous development of the industrial revolution, nanomaterials with excellent characteristics have been widely applied in various fields, greatly increasing the probability of human exposure to nanomaterials and the concerns about the potential nanotoxicity. Existing studies have shown that the toxicity of nanomaterials may be closely related to oxidative stress, inflammatory response, phagocytosis dysfunction, DNA damage, etc. Based on our focus, nanomaterials may cross the human barrier through various channels and disrupt various cell-cell junctions, while the integrity of cellular barrier is a necessary for the normal physiological function of various organs. However, until now, there is still a lack of systematic discussion in this field. This review illustrates the importance of cell-cell junctions in maintaining various organ functions and highlights the mechanism of various nanomaterials disrupt cell-cell junctions, as well as the possible damage to various organs, such as brain, eye, lung, breast, intestine, placenta, testis, heart, liver, kidney, skin, etc. Awareness of the potential negative effects of nanomaterials will help scientists deeply understand the limitations of nanotechnology, inspiring them to develop safer and more efficient nanomaterials for future personalized nanomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dykman, L.; Khlebtsov, N. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem. Soc. Rev. 2012, 41, 2256–2282.

    CAS  Google Scholar 

  2. Ni, N. Y.; Zhang, X. Y.; Ma, Y. L.; Yuan, J.; Wang, D. Q.; Ma, G. Q.; Dong, J.; Sun, X. Biodegradable two-dimensional nanomaterials for cancer theranostics. Coord. Chem. Rev. 2022, 458, 214415.

    CAS  Google Scholar 

  3. Liu, J. L.; Huang, M. Y.; Zhang, X. Y.; Hua, Z. Y.; Feng, Z. R.; Dong, Y.; Sun, T. D.; Sun, X.; Chen, C. X. Polyoxometalate nanomaterials for enhanced reactive oxygen species theranostics. Coord. Chem. Rev. 2022, 472, 214785.

    CAS  Google Scholar 

  4. Ni, N. Y.; Su, Y. Q.; Wei, Y. C.; Ma, Y. L.; Zhao, L. Z.; Sun, X. Tuning nanosiliceous framework for enhanced cancer theranostic applications. Adv. Ther. 2021, 4, 2000218.

    CAS  Google Scholar 

  5. Deng, Y.; Ediriwickrema, A.; Yang, F.; Lewis, J.; Girardi, M.; Saltzman, W. M. A sunblock based on bioadhesive nanoparticles. Nat. Mater. 2015, 14, 1278–1285.

    CAS  Google Scholar 

  6. Cai, L. L.; Song, A. Y.; Li, W.; Hsu, P. C.; Lin, D. C.; Catrysse, P. B.; Liu, Y. Y.; Peng, Y. C.; Chen, J.; Wang, H. X.; et al. Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 2018, 30, 1802152.

    Google Scholar 

  7. Omerović, N.; Djisalov, M.; Živojević, K.; Mladenović, M.; Vunduk, J.; Milenković, I.; Knežević, N. Ž.; Gadjanski, I.; Vidić, J. Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2428–2454.

    Google Scholar 

  8. Zheng, Y. Q.; Yuan, Y. F.; Tong, Z. W.; Yin, H.; Yin, S. M.; Guo, S. Y. Watermelon-like TiO2 nanoparticle (P25)@microporous amorphous carbon sphere with excellent rate capability and cycling performance for lithium-ion batteries. Nanotechnology 2020, 31, 215407.

    CAS  Google Scholar 

  9. Ni, N. Y.; Wang, W. Y.; Sun, Y.; Sun, X.; Leong, D. T. Inducible endothelial leakiness in nanotherapeutic applications. Biomaterials 2022, 287, 121640.

    CAS  Google Scholar 

  10. Cao, M. J.; Li, B.; Guo, M. Y.; Liu, Y.; Zhang, L. L.; Wang, Y. L.; Hu, B.; Li, J. Y.; Sutherland, D. S.; Wang, L. M. et al. In vivo percutaneous permeation of gold nanomaterials in consumer cosmetics: Implication in dermal safety assessment of consumer nanoproducts. Nanotoxicology 2021, 15, 131–144.

    CAS  Google Scholar 

  11. Liu, C. S.; Wang, Y. J.; Zhang, G. F.; Pang, X. B.; Yan, J.; Wu, X. O.; Qiu, Y. H.; Wang, P.; Huang, H. S.; Wang, X. W. et al. Dermal toxicity influence of gold nanomaterials after embedment in cosmetics. Toxics 2022, 10, 276.

    CAS  Google Scholar 

  12. Huang, Y. M.; Li, P.; Zhao, R. K.; Zhao, L. E.; Liu, J.; Peng, S. J.; Fu, X. X.; Wang, X. J.; Luo, R. R.; Wang, R. et al. Silica nanoparticles: Biomedical applications and toxicity. Biomed. Pharmacother. 2022, 151, 113053.

    CAS  Google Scholar 

  13. Wei, W.; Yan, Z. Y.; Liu, X. T.; Qin, Z. M.; Tao, X. Q.; Zhu, X. K.; Song, E. Q.; Chen, C. Y.; Ke, P. C.; Leong, D. T. et al. Brain accumulation and toxicity profiles of silica nanoparticles: The influence of size and exposure route. Environ. Sci. Technol. 2022, 56, 8319–8325.

    CAS  Google Scholar 

  14. Song, Y.; Li, X.; Du, X. Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur. Respir. J. 2009, 34, 559–567.

    CAS  Google Scholar 

  15. Rinaldo, M.; Andujar, P.; Lacourt, A.; Martinon, L.; Canal Raffin, M.; Dumortier, P.; Pairon, J. C.; Brochard, P. Perspectives in biological monitoring of inhaled nanosized particles. Ann. Occup. Hyg. 2015, 59, 669–680.

    CAS  Google Scholar 

  16. Card, J. W.; Zeldin, D. C.; Bonner, J. C.; Nestmann, E. R. Pulmonary applications and toxicity of engineered nanoparticles. Am. J. Physiol. Lung Cell. Mol. Physiol. 2008, 295, L400–L411.

    CAS  Google Scholar 

  17. Elgharabawy, R. M.; Alhowail, A. H.; Emara, A. M.; Aldubayan, M. A.; Ahmed, A. S. The impact of chicory (Cichoriumintybus L.) on hemodynamic functions and oxidative stress in cardiac toxicity induced by lead oxide nanoparticles in male rats. Biomed. Pharmacother. 2021, 137, 111324.

    CAS  Google Scholar 

  18. Bondarenko, O.; Mortimer, M.; Kahru, A.; Feliu, N.; Javed, I.; Kakinen, A.; Lin, S. J.; Xia, T.; Song, Y.; Davis, T. P. et al. Nanotoxicology and nanomedicine: The Yin and Yang of nano-bio interactions for the new decade. Nano Today 2021, 39, 101184.

    CAS  Google Scholar 

  19. Zihni, C.; Mills, C.; Matter, K.; Balda, M. S. Tight junctions: From simple barriers to multifunctional molecular gates. Nat. Rev. Mol. Cell Biol. 2016, 17, 564–580.

    CAS  Google Scholar 

  20. Sawada, N.; Murata, M.; Kikuchi, K.; Osanai, M.; Tobioka, H.; Kojima, T.; Chiba, H. Tight junctions and human diseases. Med. Electron Microsc. 2003, 36, 147–156.

    Google Scholar 

  21. Shen, L.; Black, E. D.; Witkowski, E. D.; Lencer, W. I.; Guerriero, V.; Schneeberger, E. E.; Turner, J. R. Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure. J. Cell Sci. 2006, 119, 2095–2106.

    CAS  Google Scholar 

  22. Li, L. X.; Gao, Y.; Chen, H. Q.; Jesus, T.; Tang, E.; Li, N.; Lian, Q. Q.; Ge, R. S.; Cheng, C. Y. Cell polarity, cell adhesion, and spermatogenesis: Role of cytoskeletons. F1000Research 2017, 6, 1565.

    Google Scholar 

  23. Leerberg, J. M.; Yap, A. S. Vinculin, cadherin mechanotransduction and homeostasis of cell-cell junctions. Protoplasma 2013, 250, 817–829.

    CAS  Google Scholar 

  24. Meng, W. X.; Mushika, Y.; Ichii, T.; Takeichi, M. Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell-cell contacts. Cell 2008, 135, 948–959.

    CAS  Google Scholar 

  25. Vinken, M.; Ceelen, L.; Vanhaecke, T.; Rogiers, V. Inhibition of gap junctional intercellular communication by toxic metals. Chem. Res. Toxicol. 2010, 23, 1862–1867.

    CAS  Google Scholar 

  26. Aasen, T.; Mesnil, M.; Naus, C. C.; Lampe, P. D.; Laird, D. W. Erratum: Gap junctions and cancer: Communicating for 50 years. Nat. Rev. Cancer 2016, 17, 74.

    Google Scholar 

  27. Kar, R.; Batra, N.; Riquelme, M. A.; Jiang, J. X. Biological role of connexin intercellular channels and hemichannels. Arch. Biochem. Biophys. 2012, 524, 2–15.

    CAS  Google Scholar 

  28. Beyer, E. C.; Ebihara, L.; Berthoud, V. M. Connexin mutants and cataracts. Front. Pharmacol. 2013, 4, 43.

    CAS  Google Scholar 

  29. Martin, T. A.; Mason, M. D.; Jiang, W. G. Tight junctions in cancer metastasis. Front. Biosci. (Landmark Ed.) 2011, 16, 898–936.

    CAS  Google Scholar 

  30. Piche, T.; Barbara, G.; Aubert, P.; Bruley des Varannes, S.; Dainese, R.; Nano, J. L.; Cremon, C.; Stanghellini, V.; De Giorgio, R.; Galmiche, J. P. et al. Impaired intestinal barrier integrity in the colon of patients with irritable bowel syndrome: Involvement of soluble mediators. Gut 2009, 58, 196–201.

    CAS  Google Scholar 

  31. Li, L. Q.; Liu, Q.; Shang, T. Y.; Song, W.; Xu, D. M.; Allen, T. D.; Wang, X.; Jeong, J.; Lobe, C. G.; Liu, J. Aberrant activation of Notch1 signaling in glomerular endothelium induces albuminuria. Circ. Res. 2021, 128, 602–618.

    CAS  Google Scholar 

  32. Trovato-Salinaro, A.; Trovato-Salinaro, E.; Failla, M.; Mastruzzo, C.; Tomaselli, V.; Gili, E.; Crimi, N.; Condorelli, D. F.; Vancheri, C. Altered intercellular communication in lung fibroblast cultures from patients with idiopathic pulmonary fibrosis. Respir. Res. 2006, 7, 122.

    Google Scholar 

  33. Božinović, K.; Nestić, D.; Centa, U. G.; Ambriović-Ristov, A.; Dekanić, A.; de Bisschop, L.; Remškar, M.; Majhen, D. In-vitro toxicity of molybdenum trioxide nanoparticles on human keratinocytes. Toxicology 2020, 444, 152564.

    Google Scholar 

  34. Assadian, E.; Dezhampanah, H.; Seydi, E.; Pourahmad, J. Toxicity of Fe2O3 nanoparticles on human blood lymphocytes. J. Biochem. Mol. Toxicol. 2019, 33, e22303.

    Google Scholar 

  35. Canivet, L.; Denayer, F. O.; Dubot, P.; Garçon, G.; Lo Guidice, J. M. Toxicity of iron nanoparticles towards primary cultures of human bronchial epithelial cells. J. Appl. Toxicol. 2021, 41, 203–215.

    CAS  Google Scholar 

  36. Bessa, M. J.; Brandão, F.; Fokkens, P. H. B.; Leseman, D. L. A. C.; Boere, A. J. F.; Cassee, F. R.; Salmatonidis, A.; Viana, M.; Vulpoi, A.; Simon, S. et al. In vitro toxicity of industrially relevant engineered nanoparticles in human alveolar epithelial cells: Air-liquid interface versus submerged cultures. Nanomaterials 2021, 11, 3225.

    CAS  Google Scholar 

  37. Zhang, Y. X.; Hai, Y.; Miao, Y. Q.; Qi, X.; Xue, W. M.; Luo, Y. N.; Fan, H. M.; Yue, T. L. The toxicity mechanism of different sized iron nanoparticles on human breast cancer (MCF7) cells. Food Chem. 2021, 341, 128263.

    CAS  Google Scholar 

  38. Pourhoseini, S.; Enos, R. T.; Murphy, A. E.; Cai, B.; Lead, J. R. Characterization, bio-uptake and toxicity of polymer-coated silver nanoparticles and their interaction with human peripheral blood mononuclear cells. Beilstein J. Nanotechnol. 2021, 12, 282–294.

    CAS  Google Scholar 

  39. Akhtar, M. J.; Ahamed, M.; Alhadlaq, H. Gadolinium oxide nanoparticles induce toxicity in human endothelial HUVECs via lipid peroxidation, mitochondrial dysfunction and autophagy modulation. Nanomaterials 2020, 10, 1675.

    CAS  Google Scholar 

  40. Vuković, B.; Milić, M.; Dobrošević, B.; Milić, M.; Ilić, K.; Pavičić, I.; Šerić, V.; Vrček, I. V. Surface stabilization affects toxicity of silver nanoparticles in human peripheral blood mononuclear cells. Nanomaterials 2020, 10, 1390.

    Google Scholar 

  41. Li, W.; Jia, M. X.; Deng, J.; Wang, J. H.; Zuberi, Z.; Yang, S.; Ba, J.; Chen, Z. MicroRNA response and toxicity of potential pathways in human colon cancer cells exposed to titanium dioxide nanoparticles. Cancers 2020, 12, 1236.

    CAS  Google Scholar 

  42. Holmes, A. M.; Mackenzie, L.; Roberts, M. S. Disposition and measured toxicity of zinc oxide nanoparticles and zinc ions against keratinocytes in cell culture and viable human epidermis. Nanotoxicology 2020, 14, 263–274.

    CAS  Google Scholar 

  43. Coccini, T.; de Simone, U.; Roccio, M.; Croce, S.; Lenta, E.; Zecca, M.; Spinillo, A.; Avanzini, M. A. In vitro toxicity screening of magnetite nanoparticles by applying mesenchymal stem cells derived from human umbilical cord lining. J. Appl. Toxicol. 2019, 39, 1320–1336.

    CAS  Google Scholar 

  44. Henson, T. E.; Navratilova, J.; Tennant, A. H.; Bradham, K. D.; Rogers, K. R.; Hughes, M. F. In vitro intestinal toxicity of copper oxide nanoparticles in rat and human cell models. Nanotoxicology 2019, 13, 795–811.

    CAS  Google Scholar 

  45. Verma, S. K.; Jha, E.; Panda, P. K.; Mukherjee, M.; Thirumurugan, A.; Makkar, H.; Das, B.; Parashar, S. K. S.; Suar, M. Mechanistic insight into ROS and neutral lipid alteration induced toxicity in the human model with fins (Danio rerio) by industrially synthesized titanium dioxide nanoparticles. Toxicol. Res. 2018, 7, 244–257.

    CAS  Google Scholar 

  46. De Simone, U.; Spinillo, A.; Caloni, F.; Gribaldo, L.; Coccini, T. Neuron-like cells generated from human umbilical cord lining-derived mesenchymal stem cells as a new in vitro model for neuronal toxicity screening: Using magnetite nanoparticles as an example. Int. J. Mol. Sci. 2020, 21, 271.

    CAS  Google Scholar 

  47. Wang, M.; Yang, Q.; Long, J.; Ding, Y.; Zou, X.; Liao, G.; Cao, Y. A comparative study of toxicity of TiO2, ZnO, and Ag nanoparticles to human aortic smooth-muscle cells. Int. J. Nanomed. 2018, 13, 8037–8049.

    CAS  Google Scholar 

  48. Korshed, P.; Li, L.; Liu, Z.; Mironov, A.; Wang, T. Antibacterial mechanisms of a novel type picosecond laser-generated silver-titanium nanoparticles and their toxicity to human cells. Int. J. Nanomed. 2017, 13, 89–101.

    Google Scholar 

  49. Choi, J. H.; Lee, H.; Lee, H.; Lee, H. Dopant-dependent toxicity of CeO2 nanoparticles is associated with dynamic changes in H3K4me3 and H3K27me3 and transcriptional activation of NRF2 gene in HaCaT human keratinocytes. Int. J. Mol. Sci. 2021, 22, 3087.

    CAS  Google Scholar 

  50. Su, H.; Li, Z.; Lazar, L.; Alhamoud, Y.; Song, X.; Li, J.; Wang, Y. F.; Fiati kenston, S. S.; Lqbal, M. Z.; Wu, A. G. et al. In vitro evaluation of the toxicity and underlying molecular mechanisms of Janus Fe3O4−TiO2 nanoparticles in human liver cells. Environ. Toxicol. 2018, 33, 1078–1088.

    CAS  Google Scholar 

  51. Martínez-Rodríguez, N. L.; Tavárez, S.; González-Sánchez, Z. I. In vitro toxicity assessment of zinc and nickel ferrite nanoparticles in human erythrocytes and peripheral blood mononuclear cell. Toxicol. in Vitro 2019, 57, 54–61.

    Google Scholar 

  52. Montalvo-Quiros, S.; Luque-Garcia, J. L. Combination of bioanalytical approaches and quantitative proteomics for the elucidation of the toxicity mechanisms associated to TiO2 nanoparticles exposure in human keratinocytes. Food Chem. Toxicol. 2019, 127, 197–205.

    CAS  Google Scholar 

  53. Remzova, M.; Zouzelka, R.; Brzicova, T.; Vrbova, K.; Pinkas, D.; Rőssner, P.; Topinka, J.; Rathousky, J. Toxicity of TiO2, ZnO, and SiO2 nanoparticles in human lung cells: Safe-by-design development of construction materials. Nanomaterials 2019, 9, 968.

    CAS  Google Scholar 

  54. Mittal, S.; Pandey, A. K. Cerium oxide nanoparticles induced toxicity in human lung cells: Role of ROS mediated DNA damage and apoptosis. Biomed Res. Int. 2014, 2014, 891934.

    Google Scholar 

  55. Setyawati, M. I.; Tay, C. Y.; Bay, B. H.; Leong, D. T. Gold nanoparticles induced endothelial leakiness depends on particle size and endothelial cell origin. ACS Nano 2017, 11, 5020–5030.

    CAS  Google Scholar 

  56. Tay, C. Y.; Setyawati, M. I.; Leong, D. T. Nanoparticle density: A critical biophysical regulator of endothelial permeability. ACS Nano 2017, 11, 2764–2772.

    CAS  Google Scholar 

  57. Wang, J. P.; Zhang, L. Y.; Peng, F.; Shi, X. H.; Leong, D. T. Targeting endothelial cell junctions with negatively charged gold nanoparticles. Chem. Mater. 2018, 30, 3759–3767.

    CAS  Google Scholar 

  58. Setyawati, M. I.; Mochalin, V. N.; Leong, D. T. Tuning endothelial permeability with functionalized nanodiamonds. ACS Nano 2016, 10, 1170–1181.

    CAS  Google Scholar 

  59. Abbott, N. J.; Friedman, A. Overview and introduction: The blood-brain barrier in health and disease. Epilepsia 2012, 53, 1–6.

    Google Scholar 

  60. Löscher, W.; Potschka, H. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog. Neurobiol. 2005, 76, 22–76.

    Google Scholar 

  61. Silva, G. A. Neuroscience nanotechnology: Progress, opportunities and challenges. Nat. Rev. Neurosci. 2006, 7, 65–74.

    CAS  Google Scholar 

  62. Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823–839.

    Google Scholar 

  63. Disdier, C.; Devoy, J.; Cosnefroy, A.; Chalansonnet, M.; Herlin-Boime, N.; Brun, E.; Lund, A.; Mabondzo, A. Tissue biodistribution of intravenously administrated titanium dioxide nanoparticles revealed blood-brain barrier clearance and brain inflammation in rat. Part. Fibre Toxicol. 2015, 12, 27.

    Google Scholar 

  64. Xu, L. M.; Dan, M.; Shao, A. L.; Cheng, X.; Zhang, C. P.; Yokel, R. A.; Takemura, T.; Hanagata, N.; Niwa, M.; Watanabe, D. Silver nanoparticles induce tight junction disruption and astrocyte neurotoxicity in a rat blood-brain barrier primary triple coculture model. Int. J. Nanomed. 2015, 10, 6105–6119.

    CAS  Google Scholar 

  65. Abbott, N. J.; Rönnbäck, L.; Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 2006, 7, 41–53.

    CAS  Google Scholar 

  66. Tolaymat, T. M.; El Badawy, A. M.; Genaidy, A.; Scheckel, K. G.; Luxton, T. P.; Suidan, M. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers. Sci. Total Environ. 2010, 408, 999–1006.

    CAS  Google Scholar 

  67. Bloom, G. S. Amyloid-β and Tau: The trigger and bullet in alzheimer disease pathogenesis. JAMA Neurol. 2014, 71, 505–508.

    Google Scholar 

  68. Sinha, S.; Lieberburg, I. Cellular mechanisms of β-amyloid production and secretion. Proc. Natl. Acad. Sci. USA 1999, 96, 11049–11053.

    CAS  Google Scholar 

  69. Smolarkiewicz, M.; Skrzypczak, T.; Wojtaszek, P. The very many faces of presenilins and the γ-secretase complex. Protoplasma 2013, 250, 997–1011.

    CAS  Google Scholar 

  70. Hsiao, Y. H.; Lin, C. I.; Liao, H.; Chen, Y. H.; Lin, S. H. Palmitic acid-induced neuron cell cycle G2/M arrest and endoplasmic reticular stress through protein palmitoylation in SH-SY5Y human neuroblastoma cells. Int. J. Mol. Sci. 2014, 15, 20876–20899.

    CAS  Google Scholar 

  71. Lin, H. C.; Ho, M. Y.; Tsen, C. M.; Huang, C. C.; Wu, C. C.; Huang, Y. J.; Hsiao, I. L.; Chuang, C. Y. From the cover: Comparative proteomics reveals silver nanoparticles alter fatty acid metabolism and amyloid beta clearance for neuronal apoptosis in a triple cell coculture model of the blood-brain barrier. Toxicol. Sci. 2017, 158, 151–163.

    CAS  Google Scholar 

  72. Abid, M. F.; Abdulrahman, A. A.; Hamza, N. H. Hydrodynamic and kinetic study of a hybrid detoxification process with zero liquid discharge system in an industrial wastewater treatment. J. Environ. Health Sci. Eng. 2014, 12, 145.

    Google Scholar 

  73. Baan, R.; Straif, K.; Grosse, Y.; Secretan, B.; El Ghissassi, F.; Cogliano, V. Carcinogenicity of carbon black, titanium dioxide, and talc. Lancet Oncol. 2006, 7, 295–296.

    Google Scholar 

  74. Brun, E.; Carrière, M.; Mabondzo, A. In vitro evidence of dysregulation of blood-brain barrier function after acute and repeated/long-term exposure to TiO2 nanoparticles. Biomaterials 2012, 33, 886–896.

    CAS  Google Scholar 

  75. Tang, L.; Cheng, J. J. Nonporous silica nanoparticles for nanomedicine application. Nano Today 2013, 8, 290–312.

    CAS  Google Scholar 

  76. Liu, X.; Sui, B. Y.; Sun, J. Blood-brain barrier dysfunction induced by silica NPs in vitro and in vivo: Involvement of oxidative stress and Rho-kinase/JNK signaling pathways. Biomaterials 2017, 121, 64–82.

    CAS  Google Scholar 

  77. Ceccariglia, S.; D’altocolle, A.; Del Fa’, A.; Silvestrini, A.; Barba, M.; Pizzolante, F.; Repele, A.; Michetti, F.; Gangitano, C. Increased expression of Aquaporin 4 in the rat hippocampus and cortex during trimethyltin-induced neurodegeneration. Neuroscience 2014, 274, 273–288.

    CAS  Google Scholar 

  78. Kawahara, M. Effects of aluminum on the nervous system and its possible link with neurodegenerative diseases. J. Alzheimers Dis. 2005, 8, 171–182.

    CAS  Google Scholar 

  79. Becaria, A.; Campbell, A.; Bondy, S. C. Aluminum as a toxicant. Toxicol. Ind. Health 2016, 18, 309–320.

    Google Scholar 

  80. Chen, L.; Yokel, R. A.; Hennig, B.; Toborek, M. Manufactured aluminum oxide nanoparticles decrease expression of tight junction proteins in brain vasculature. J. Neuroimmune Pharmacol. 2008, 3, 286–295.

    Google Scholar 

  81. Silverstone, A. E.; Rosenbaum, P. F.; Weinstock, R. S.; Bartell, S. M.; Foushee, H. R.; Shelton, C.; Pavuk, M. Polychlorinated biphenyl (PCB) exposure and diabetes: Results from the anniston community health survey. Environ. Health Perspect. 2012, 120, 727–732.

    CAS  Google Scholar 

  82. Saghir, S. A.; Hansen, L. G.; Holmes, K. R.; Kodavanti, P. R. S. Differential and non-uniform tissue and brain distribution of two distinct 14C-hexachlorobiphenyls in weanling rats. Toxicol. Sci. 2000, 54, 60–70.

    CAS  Google Scholar 

  83. Zhang, B.; Chen, L.; Choi, J. J.; Hennig, B.; Toborek, M. Cerebrovascular toxicity of PCB153 is enhanced by binding to silica nanoparticles. J. Neuroimmune Pharmacol. 2012, 7, 991–1001.

    Google Scholar 

  84. Haorah, J.; Ramirez, S. H.; Schall, K.; Smith, D.; Pandya, R.; Persidsky, Y. Oxidative stress activates protein tyrosine kinase and matrix metalloproteinases leading to blood-brain barrier dysfunction. J. Neurochem. 2007, 101, 566–576.

    CAS  Google Scholar 

  85. Rosenberg, G. A.; Estrada, E. Y.; Dencoff, J. E. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke 1998, 29, 2189–2195.

    CAS  Google Scholar 

  86. Lo, E. H.; Dalkara, T.; Moskowitz, M. A. Mechanisms, challenges and opportunities in stroke. Nat. Rev. Neurosci. 2003, 4, 399–414.

    CAS  Google Scholar 

  87. Chernousova, S.; Epple, M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem., Int. Ed. 2013, 52, 1636–1653.

    CAS  Google Scholar 

  88. Saleh, H. M.; El-Sayed, Y. S.; Naser, S. M.; Eltahawy, A. S.; Onoda, A.; Umezawa, M. Efficacy of α-lipoic acid against cadmium toxicity on metal ion and oxidative imbalance, and expression of metallothionein and antioxidant genes in rabbit brain. Environ. Sci. Pollut. Res. 2017, 24, 24593–24601.

    CAS  Google Scholar 

  89. Mohamed, N. E. S.; Abd El-Moneim, A. E. Ginkgo biloba extract alleviates oxidative stress and some neurotransmitters changes induced by aluminum chloride in rats. Nutrition 2017, 35, 93–99.

    CAS  Google Scholar 

  90. Lebda, M. A.; Sadek, K. M.; Tohamy, H. G.; Abouzed, T. K.; Shukry, M.; Umezawa, M.; El-Sayed, Y. S. Potential role of α-lipoic acid and Ginkgo biloba against silver nanoparticles-induced neuronal apoptosis and blood-brain barrier impairments in rats. Life Sci. 2018, 212, 251–260.

    CAS  Google Scholar 

  91. Maynard, A. D. A decade of uncertainty. Nat. Nanotechnol. 2014, 9, 159–160.

    CAS  Google Scholar 

  92. Frey, T.; Antonetti, D. A. Alterations to the blood-retinal barrier in diabetes: Cytokines and reactive oxygen species. Antioxid. Redox Signal. 2011, 15, 1271–1284.

    CAS  Google Scholar 

  93. Díaz-Coránguez, M.; Ramos, C.; Antonetti, D. A. The inner blood-retinal barrier: Cellular basis and development. Vision Res. 2017, 139, 123–137.

    Google Scholar 

  94. Dréno, B.; Alexis, A.; Chuberre, B.; Marinovich, M. Safety of titanium dioxide nanoparticles in cosmetics. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 34–46.

    Google Scholar 

  95. Chan, Y. J.; Liao, P. L.; Tsai, C. H.; Cheng, Y. W.; Lin, F. L.; Ho, J. D.; Chen, C. Y.; Li, C. H. Titanium dioxide nanoparticles impair the inner blood-retinal barrier and retinal electrophysiology through rapid ADAM17 activation and claudin-5 degradation. Part. Fibre Toxicol. 2021, 18, 4.

    CAS  Google Scholar 

  96. Sel, S.; Kalinski, T.; Enssen, I.; Kaiser, M.; Nass, N.; Trau, S.; Wollensak, G.; Bräuer, L.; Jäger, K.; Paulsen, F. Expression analysis of ADAM17 during mouse eye development. Ann. Anat. 2012, 194, 334–338.

    CAS  Google Scholar 

  97. Simberg, D.; Zhang, W. M.; Merkulov, S.; McCrae, K.; Park, J. H.; Sailor, M. J.; Ruoslahti, E. Contact activation of kallikrein-kinin system by superparamagnetic iron oxide nanoparticles in vitro and in vivo. J. Control. Release 2009, 140, 301–305.

    CAS  Google Scholar 

  98. Mecke, A.; Majoros, I. J.; Patri, A. K.; Baker, J. R.; Banaszak Holl, M. M.; Orr, B. G. Lipid bilayer disruption by polycationic polymers: The roles of size and chemical functional group. Langmuir 2005, 21, 10348–10354.

    CAS  Google Scholar 

  99. Wittekindt, O. H. Tight junctions in pulmonary epithelia during lung inflammation. Pflugers Arch. 2017, 469, 135–147.

    CAS  Google Scholar 

  100. Trosko, J. E.; Ruch, R. J. Gap junctions as targets for cancer chemoprevention and chemotherapy. Curr. Drug Targets 2002, 3, 465–482.

    CAS  Google Scholar 

  101. Hou, J.; Wu, Y. Z.; Li, X.; Wei, B. B.; Li, S. G.; Wang, X. K. Toxic effects of different types of zinc oxide nanoparticles on algae, plants, invertebrates, vertebrates and microorganisms. Chemosphere 2018, 193, 852–860.

    CAS  Google Scholar 

  102. Detampel, P.; Ganguly, A.; Tehranian, S.; Green, F.; Singha, S.; Santamaria, P.; Jeje, A. A.; Cho, C. S.; Petri, B. Amrein, M. W. In vivo clearance of nanoparticles by transcytosis across alveolar epithelial cells. PLoS One 2019, 14, e0223339.

    CAS  Google Scholar 

  103. Derk, R.; Davidson, D. C.; Manke, A.; Stueckle, T. A.; Rojanasakul, Y.; Wang, L. Y. Potential in vitro model for testing the effect of exposure to nanoparticles on the lung alveolar epithelial barrier. Sens. Bio-Sens. Res. 2015, 3, 38–45.

    Google Scholar 

  104. Porter, D. W.; Hubbs, A. F.; Chen, B. T.; McKinney, W.; Mercer, R. R.; Wolfarth, M. G.; Battelli, L.; Wu, N. Q.; Sriram, K.; Leonard, S. et al. Acute pulmonary dose-responses to inhaled multi-walled carbon nanotubes. Nanotoxicology 2012, 7, 1179–1194.

    Google Scholar 

  105. Faner, R.; Rojas, M.; MacNee, W.; Agustí, A. Abnormal lung aging in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2012, 186, 306–313.

    CAS  Google Scholar 

  106. Freund-Michel, V.; Muller, B.; Marthan, R.; Savineau, J. P.; Guibert, C. Expression and role of connexin-based gap junctions in pulmonary inflammatory diseases. Pharmacol. Ther. 2016, 164, 105–119.

    CAS  Google Scholar 

  107. Nagibin, V.; Egan Benova, T.; Viczenczova, C.; Szeiffova Bacova, B.; Dovinova, I.; Barancik, M.; Tribulova, N. Ageing related down-regulation of myocardial connexin-43 and up-regulation of MMP-2 may predict propensity to atrial fibrillation in experimental animals. Physiol. Res. 2016, 65, S91–S100.

    CAS  Google Scholar 

  108. Spannbrucker, T.; Ale-Agha, N.; Goy, C.; Dyballa-Rukes, N.; Jakobs, P.; Jander, K.; Altschmied, J.; Unfried, K.; Haendeler, J. Induction of a senescent like phenotype and loss of gap junctional intercellular communication by carbon nanoparticle exposure of lung epithelial cells. Exp. Gerontol. 2019, 117, 106–112.

    CAS  Google Scholar 

  109. Leung, C. C.; Yu, I. T. S.; Chen, W. H. Silicosis. Lancet 2012, 379, 2008–2018.

    CAS  Google Scholar 

  110. Liu, Y. Q.; Wei, H. Y.; Tang, J.; Yuan, J. M.; Wu, M. M.; Yao, C. J.; Hosoi, K.; Yu, S. L.; Zhao, X. Y.; Han, Y. et al. Dysfunction of pulmonary epithelial tight junction induced by silicon dioxide nanoparticles via the ROS/ERK pathway and protein degradation. Chemosphere 2020, 255, 126954.

    CAS  Google Scholar 

  111. Chen, Q. S.; Wang, Q. W.; Zhu, J. H.; Xiao, Q. Z.; Zhang, L. Reactive oxygen species: Key regulators in vascular health and diseases. Br. J. Pharmacol. 2018, 175, 1279–1292.

    CAS  Google Scholar 

  112. Zhang, L.; Wei, P. F.; Song, Y. H.; Dong, L.; Wu, Y. D.; Hao, Z. Y.; Fan, S.; Tai, S.; Meng, J. L.; Lu, Y. et al. MnFe2O4 nanoparticles accelerate the clearance of mutant huntingtin selectively through ubiquitin-proteasome system. Biomaterials 2019, 216, 119248.

    CAS  Google Scholar 

  113. Malanchi, I.; Santamaria-Martínez, A.; Susanto, E.; Peng, H.; Lehr, H. A.; Delaloye, J. F.; Huelsken, J. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 2012, 481, 85–89.

    CAS  Google Scholar 

  114. Peng, F.; Setyawati, M. I.; Tee, J. K.; Ding, X. G.; Wang, J. P.; Nga, M. E.; Ho, H. K.; Leong, D. T. Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Nat. Nanotechnol. 2019, 14, 279–286.

    CAS  Google Scholar 

  115. Fröhlich, E. E.; Fröhlich, E. Cytotoxicity of nanoparticles contained in food on intestinal cells and the gut microbiota. Int. J. Mol. Sci. 2016, 17, 509.

    Google Scholar 

  116. Chen, C. M.; Wu, M. L.; Ho, Y. C.; Gung, P. Y.; Tsai, M. H.; Orekhov, A. N.; Sobenin, I. A.; Lin, P. P.; Yet, S. F. Exposure to zinc oxide nanoparticles disrupts endothelial tight and adherens junctions and induces pulmonary inflammatory cell infiltration. Int. J. Mol. Sci. 2020, 21, 3437.

    CAS  Google Scholar 

  117. Dewey, K. G. Cross-cultural patterns of growth and nutritional status of breast-fed infants. Am. J. Clin. Nutr. 1998, 67, 10–17.

    CAS  Google Scholar 

  118. Labbok, M. H.; Clark, D.; Goldman, A. S. Breastfeeding: Maintaining an irreplaceable immunological resource. Nat. Rev. Immunol. 2004, 4, 565–572.

    CAS  Google Scholar 

  119. Anderson, J. W.; Johnstone, B. M.; Remley, D. T. Breast-feeding and cognitive development: A meta-analysis. Am. J. Clin. Nutr. 1999, 70, 525–535.

    CAS  Google Scholar 

  120. Collaborative group on hormonal factors in breast cancer: Breast cancer and breastfeeding: Collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50302 women with breast cancer and 96973 women without the disease. Lancet 2002, 360, 187–195.

  121. Luan, N. N.; Wu, Q. J.; Gong, T. T.; Vogtmann, E.; Wang, Y. L.; Lin, B. Breastfeeding and ovarian cancer risk: A meta-analysis of epidemiologic studies. Am. J. Clin. Nutr. 2013, 98, 1020–1031.

    CAS  Google Scholar 

  122. Tsugami, Y.; Matsunaga, K.; Suzuki, T.; Nishimura, T.; Kobayashi, K. Phytoestrogens weaken the blood-milk barrier in lactating mammary epithelial cells by affecting tight junctions and cell viability. J. Agric. Food Chem. 2017, 65, 11118–11124.

    CAS  Google Scholar 

  123. Wang, J.; Johnson, T.; Sahin, L.; Tassinari, M. S.; Anderson, P. O.; Baker, T. E.; Bucci-Rechtweg, C.; Burckart, G. J.; Chambers, C. D.; Hale, T. W. et al. Evaluation of the safety of drugs and biological products used during lactation: Workshop summary. Clin. Pharmacol. Ther. 2017, 101, 736–744.

    CAS  Google Scholar 

  124. Dianati, E.; Plante, I. Analysis of protein-protein interactions and co-localization between components of gap, tight, and adherens junctions in murine mammary glands. J. Vis. Exp. 2017, 55772.

    Google Scholar 

  125. Verstegen, R. H. J.; Ito, S. Drugs in lactation. J. Obstet. Gynaecol. Res. 2019, 45, 522–531.

    Google Scholar 

  126. Zhang, C. K.; Zhai, S. M.; Wu, L.; Bai, Y. H.; Jia, J. B.; Zhang, Y.; Zhang, B.; Yan, B. Induction of size-dependent breakdown of blood-milk barrier in lactating mice by TiO2 nanoparticles. PLoS One 2015, 10, e0122591.

    Google Scholar 

  127. Ulluwishewa, D.; Anderson, R. C.; McNabb, W. C.; Moughan, P. J.; Wells, J. M.; Roy, N. C. Regulation of tight junction permeability by intestinal bacteria and dietary components. J. Nutr. 2011, 141, 769–776.

    CAS  Google Scholar 

  128. Wu, J. R.; Lai, X.; Cui, G. M.; Chen, Q. Y.; Liu, J.; Kang, Y. Y.; Zhang, Y. L.; Feng, X. L.; Hu, C.; Shao, L. Q. Dual effects of JNK activation in blood-milk barrier damage induced by zinc oxide nanoparticles. J. Hazard. Mater. 2020, 399, 122809.

    CAS  Google Scholar 

  129. Suzuki, T. Regulation of intestinal epithelial permeability by tight junctions. Cell. Mol. Life Sci. 2012, 70, 631–659.

    Google Scholar 

  130. Gaillet, S.; Rouanet, J. M. Silver nanoparticles: Their potential toxic effects after oral exposure and underlying mechanisms—A review. Food Chem. Toxicol. 2015, 77, 58–63.

    CAS  Google Scholar 

  131. Odenwald, M. A.; Turner, J. R. Intestinal permeability defects: Is it time to treat. Clin. Gastroenterol. Hepatol. 2013, 11, 1075–1083.

    Google Scholar 

  132. Zhao, Y.; Tang, Y. Z.; Liu, S. J.; Jia, T. T.; Zhou, D. G.; Xu, H. Y. Foodborne TiO2 nanoparticles induced more severe hepatotoxicity in fructose-induced metabolic syndrome mice via exacerbating oxidative stress-mediated intestinal barrier damage. Foods 2021, 10, 986.

    CAS  Google Scholar 

  133. Su, L. P.; Nalle, S. C.; Shen, L.; Turner, E. S.; Singh, G.; Breskin, L. A.; Khramtsova, E. A.; Khramtsova, G.; Tsai, P. Y.; Fu, Y. X. et al. TNFR2 activates MLCK-dependent tight junction dysregulation to cause apoptosis-mediated barrier loss and experimental colitis. Gastroenterology 2013, 145, 407–415.

    CAS  Google Scholar 

  134. Zhang, Y.; Chen, Y. S.; Westerhoff, P.; Hristovski, K.; Crittenden, J. C. Stability of commercial metal oxide nanoparticles in water. Water Res. 2008, 42, 2204–2212.

    CAS  Google Scholar 

  135. Koeneman, B. A.; Zhang, Y.; Hristovski, K.; Westerhoff, P.; Chen, Y. S.; Crittenden, J. C.; Capco, D. G. Experimental approach for an in vitro toxicity assay with non-aggregated quantum dots. Toxicol. in Vitro 2009, 23, 955–962.

    CAS  Google Scholar 

  136. Kalive, M.; Zhang, W.; Chen, Y. S.; Capco, D. G. Human intestinal epithelial cells exhibit a cellular response indicating a potential toxicity upon exposure to hematite nanoparticles. Cell Biol. Toxicol. 2012, 28, 343–368.

    CAS  Google Scholar 

  137. Williams, K. M.; Gokulan, K.; Cerniglia, C. E.; Khare, S. Size and dose dependent effects of silver nanoparticle exposure on intestinal permeability in an in vitro model of the human gut epithelium. J. Nanobiotechnol. 2016, 14, 62.

    Google Scholar 

  138. Orr, S. E.; Gokulan, K.; Boudreau, M.; Cerniglia, C. E.; Khare, S. Alteration in the mRNA expression of genes associated with gastrointestinal permeability and ileal TNF-α secretion due to the exposure of silver nanoparticles in Sprague-Dawley rats. J. Nanobiotechnol. 2019, 17, 63.

    Google Scholar 

  139. Jésus, P.; Ouelaa, W.; François, M.; Riachy, L.; Guérin, C.; Aziz, M.; Do Rego, J. C.; Déchelotte, P.; Fetissov, S. O.; Coëffier, M. Alteration of intestinal barrier function during activity-based anorexia in mice. Clin. Nutr. 2014, 33, 1046–1053.

    Google Scholar 

  140. Kinugasa, T.; Sakaguchi, T.; Gu, X. B.; Reinecker, H. C. Claudins regulate the intestinal barrier in response to immune mediators. Gastroenterology 2000, 118, 1001–1011.

    CAS  Google Scholar 

  141. Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Dusemund, B.; Filipič, M.; Frutos, M. J.; Galtier, P.; Gott, D. et al. Re-evaluation of silicon dioxide (E 551) as a food additive. EFSA J. 2018, 16, e05088.

    Google Scholar 

  142. Cornu, R.; Chrétien, C.; Pellequer, Y.; Martin, H.; Béduneau, A. Small silica nanoparticles transiently modulate the intestinal permeability by actin cytoskeleton disruption in both Caco-2 and Caco-2/HT29-MTX models. Arch. Toxicol. 2020, 94, 1191–1202.

    CAS  Google Scholar 

  143. Chen, Z. J.; Wang, Y.; Wang, X.; Zhuo, L.; Chen, S.; Tang, S. C.; Zhao, L.; Luan, X. G.; Jia, G. Effect of titanium dioxide nanoparticles on glucose homeostasis after oral administration. J. Appl. Toxicol. 2018, 38, 810–823.

    CAS  Google Scholar 

  144. Yao, L. Y.; Tang, Y. Z.; Chen, B. L.; Hong, W. D.; Xu, X. Y.; Liu, Y.; Aguilar, Z. P.; Xu, H. Y. Oral exposure of titanium oxide nanoparticles induce ileum physical barrier dysfunction via Th1/Th2 imbalance. Environ. Toxicol. 2020, 35, 982–990.

    CAS  Google Scholar 

  145. Martínez, C.; González-Castro, A.; Vicario, M.; Santos, J. Cellular and molecular basis of intestinal barrier dysfunction in the irritable bowel syndrome. Gut Liver 2012, 6, 305–315.

    Google Scholar 

  146. Jiang, X. H.; Bukhari, I.; Zheng, W.; Yin, S.; Wang, Z.; Cooke, H. J.; Shi, Q. H. Blood-testis barrier and spermatogenesis: Lessons from genetically-modified mice. Asian J. Androl. 2014, 16, 572–580.

    Google Scholar 

  147. Hai, Y. N.; Hou, J. M.; Liu, Y.; Liu, Y.; Yang, H.; Li, Z.; He, Z. P. The roles and regulation of Sertoli cells in fate determinations of spermatogonial stem cells and spermatogenesis. Semin. Cell Dev. Biol. 2014, 29, 66–75.

    CAS  Google Scholar 

  148. Liu, L. J.; He, Y. D.; Xiao, Z. P.; Tao, W. J.; Zhu, J.; Wang, B.; Liu, Z. X.; Wang, M. Q. Effects of selenium nanoparticles on reproductive performance of male sprague-dawley rats at supranutritional and nonlethal levels. Biol. Trace Elem. Res. 2017, 180, 81–89.

    CAS  Google Scholar 

  149. Shukla, R.; Kumar, A.; Pandey, A. K.; Singh, S. S.; Dhawan, A. Titanium dioxide nanoparticles induce oxidative stress-mediated apoptosis in human keratinocyte cells. J. Biomed. Nanotechnol. 2011, 7, 100–101.

    CAS  Google Scholar 

  150. Jia, F.; Sun, Z. L.; Yan, X. Y.; Zhou, B. R.; Wang, J. D. Effect of pubertal nano-TiO2 exposure on testosterone synthesis and spermatogenesis in mice. Arch. Toxicol. 2014, 88, 781–788.

    CAS  Google Scholar 

  151. Ni, D. Q.; Ma, D. D.; Hao, S. L.; Yang, W. X.; Kovacs, T.; Tan, F. Q. Titanium dioxide nanoparticles perturb the blood-testis barrier via disruption of actin-based cell adhesive function. Aging 2021, 13, 25440–25452.

    CAS  Google Scholar 

  152. Zhang, X. F.; Choi, Y. J.; Han, J. W.; Kim, E.; Park, J. H.; Gurunathan, S.; Kim, J. H. Differential nanoreprotoxicity of silver nanoparticles in male somatic cells and spermatogonial stem cells. Int. J. Nanomed. 2015, 10, 1335–1357.

    Google Scholar 

  153. Watson, E. D.; Cross, J. C. Development of structures and transport functions in the mouse placenta. Physiology 2005, 20, 180–193.

    CAS  Google Scholar 

  154. Teng, C. F.; Jia, J. B.; Wang, Z. P.; Sharma, V. K.; Yan, B. Size-dependent maternal-fetal transfer and fetal developmental toxicity of ZnO nanoparticles after oral exposures in pregnant mice. Ecotoxicol. Environ. Saf. 2019, 182, 109439.

    CAS  Google Scholar 

  155. Zhang, D. Q.; Eng, C. Y.; Stuckey, D. C.; Zhou, Y. Effects of ZnO nanoparticle exposure on wastewater treatment and soluble microbial products (SMPs) in an anoxic-aerobic membrane bioreactor. Chemosphere 2017, 171, 446–459.

    CAS  Google Scholar 

  156. Satarug, S.; Garrett, S. H.; Sens, M. A.; Sens, D. A. Cadmium, environmental exposure, and health outcomes. Environ. Health Perspect. 2010, 118, 182–190.

    CAS  Google Scholar 

  157. Jia, J. B.; Li, F. F.; Zhai, S. M.; Zhou, H. Y.; Liu, S. J.; Jiang, G. B.; Yan, B. Susceptibility of overweight mice to liver injury as a result of the ZnO nanoparticle-enhanced liver deposition of Pb2+. Environ. Sci. Technol. 2017, 51, 1775–1784.

    CAS  Google Scholar 

  158. Wei, Y. Y.; Li, Y.; Jia, J. B.; Jiang, Y. G.; Zhao, B.; Zhang, Q.; Yan, B. Aggravated hepatotoxicity occurs in aged mice but not in young mice after oral exposure to zinc oxide nanoparticles. NanoImpact 2016, 3–4, 1–11.

    Google Scholar 

  159. Zhang, X. F.; Gurunathan, S.; Kim, J. H. Effects of silver nanoparticles on neonatal testis development in mice. Int. J. Nanomed. 2015, 10, 6243–6256.

    CAS  Google Scholar 

  160. Teng, C. F.; Jia, J. B.; Wang, Z. P.; Yan, B. Oral Co-exposures to zinc oxide nanoparticles and CdCl2 induced maternal-fetal pollutant transfer and embryotoxicity by damaging placental barriers. Ecotoxicol. Environ. Saf. 2020, 189, 109956.

    CAS  Google Scholar 

  161. Qiu, L. L.; Qian, Y. Y.; Liu, Z. Z.; Wang, C.; Qu, J. H.; Wang, X. K.; Wang, S. L. Perfluorooctane sulfonate (PFOS) disrupts blood-testis barrier by down-regulating junction proteins via p38 MAPK/ATF2/MMP9 signaling pathway. Toxicology 2016, 373, 1–12.

    CAS  Google Scholar 

  162. Wang, Z. J.; Zhang, C. C.; Liu, X. J.; Huang, F. Y.; Wang, Z. P.; Yan, B. Oral intake of ZrO2 nanoparticles by pregnant mice results in nanoparticles’ deposition in fetal brains. Ecotoxicol. Environ. Saf. 2020, 202, 110884.

    CAS  Google Scholar 

  163. Kumar, R.; Roy, I.; Ohulchanskky, T. Y.; Vathy, L. A.; Bergey, E. J.; Sajjad, M.; Prasad, P. N. In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. ACS Nano 2010, 4, 699–708.

    CAS  Google Scholar 

  164. Hansen, A.; Bi, P.; Nitschke, M.; Pisaniello, D.; Ryan, P.; Sullivan, T.; Barnett, A. G. Particulate air pollution and cardiorespiratory hospital admissions in a temperate Australian city: A case-crossover analysis. Sci. Total Environ. 2012, 416, 48–52.

    CAS  Google Scholar 

  165. Du, Z. J.; Cui, G. Q.; Zhang, J.; Liu, X. M.; Zhang, Z. H.; Jia, Q.; Ng, J. C.; Peng, C.; Bo, C. X.; Shao, H. Inhibition of gap junction intercellular communication is involved in silica nanoparticles-induced H9c2 cardiomyocytes apoptosis via the mitochondrial pathway. Int. J. Nanomedicine 2017, 12, 2179–2188.

    CAS  Google Scholar 

  166. Wei, L. Y.; Lu, J. R.; Xu, H. Z.; Patel, A.; Chen, Z. S.; Chen, G. F. Silver nanoparticles: Synthesis, properties, and therapeutic applications. Drug Discov. Today 2015, 20, 595–601.

    CAS  Google Scholar 

  167. Guo, H.; Zhang, J.; Boudreau, M.; Meng, J.; Yin, J. J.; Liu, J.; Xu, H. Y. Intravenous administration of silver nanoparticles causes organ toxicity through intracellular ROS-related loss of inter-endothelial junction. Part. Fibre Toxicol. 2016, 13, 21.

    Google Scholar 

  168. Mijnendonckx, K.; Leys, N.; Mahillon, J.; Silver, S.; van Houdt, R. Antimicrobial silver: Uses, toxicity and potential for resistance. BioMetals 2013, 26, 609–621.

    CAS  Google Scholar 

  169. Singh, A. P.; Mia, B.; Saxena, R. K. Acid-functionalized singlewalled carbon nanotubes alter epithelial tight junctions and enhance paracellular permeability. J. Biosci. 2020, 45, 23.

    CAS  Google Scholar 

  170. Lam, C. W.; James, J. T.; McCluskey, R.; Arepalli, S.; Hunter, R. L. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit. Rev. Toxicol. 2006, 36, 189–217.

    CAS  Google Scholar 

  171. Blazer-Yost, B. L.; Banga, A.; Amos, A.; Chernoff, E.; Lai, X. Y.; Li, C.; Mitra, S.; Witzmann, F. A. Effect of carbon nanoparticles on renal epithelial cell structure, barrier function, and protein expression. Nanotoxicology 2011, 5, 354–371.

    CAS  Google Scholar 

  172. Sugita, K.; Kabashima, K. Tight junctions in the development of asthma, chronic rhinosinusitis, atopic dermatitis, eosinophilic esophagitis, and inflammatory bowel diseases. J. Leukoc. Biol. 2020, 107, 749–762.

    CAS  Google Scholar 

  173. Yuan, J. L.; Zhang, Y.; Zhang, Y. B.; Mo, Y. Q.; Zhang, Q. W. Effects of metal nanoparticles on tight junction-associated proteins via HIF-1α/miR-29b/MMPs pathway in human epidermal keratinocytes. Part. Fibre Toxicol. 2021, 18, 13.

    CAS  Google Scholar 

  174. Nohynek, G. J.; Dufour, E. K. Nano-sized cosmetic formulations or solid nanoparticles in sunscreens: A risk to human health. Arch. Toxicol. 2012, 86, 1063–1075.

    CAS  Google Scholar 

  175. Labouta, H. I.; Liu, D. C.; Lin, L. L.; Butler, M. K.; Grice, J. E.; Raphael, A. P.; Kraus, T.; El-Khordagui, L. K.; Soyer, H. P.; Roberts, M. S. et al. Gold nanoparticle penetration and reduced metabolism in human skin by toluene. Pharm. Res. 2011, 28, 2931–2944.

    CAS  Google Scholar 

  176. Vankoningsloo, S.; Piret, J. P.; Saout, C.; Noel, F.; Mejia, J.; Zouboulis, C. C.; Delhalle, J.; Lucas, S.; Toussaint, O. Cytotoxicity of multi-walled carbon nanotubes in three skin cellular models: Effects of sonication, dispersive agents and corneous layer of reconstructed epidermis. Nanotoxicology 2010, 4, 84–97.

    CAS  Google Scholar 

  177. Liu, Y. P.; Zhu, S.; Gu, Z. J.; Chen, C. Y.; Zhao, Y. L. Toxicity of manufactured nanomaterials. Particuology 2022, 69, 31–48.

    CAS  Google Scholar 

  178. Setyawati, M. I.; Leong, D. T. Mesoporous silica nanoparticles as an antitumoral-angiogenesis strategy. ACS Appl. Mater. Interfaces 2017, 9, 6690–6703.

    CAS  Google Scholar 

  179. Kota, D.; Kang, L.; Rickel, A.; Liu, J. Y.; Smith, S.; Hong, Z. K.; Wang, C. Z. Low doses of zeolitic imidazolate framework-8 nanoparticles alter the actin organization and contractility of vascular smooth muscle cells. J. Hazard. Mater. 2021, 414, 125514.

    CAS  Google Scholar 

  180. Lu, X. F.; Zhu, Y.; Bai, R.; Wu, Z. S.; Qian, W. C.; Yang, L. Y.; Cai, R.; Yan, H.; Li, T.; Pandey, V. et al. Long-term pulmonary exposure to multi-walled carbon nanotubes promotes breast cancer metastatic cascades. Nat. Nanotechnol. 2019, 14, 719–727.

    CAS  Google Scholar 

  181. Casals, E.; Zeng, M. L.; Parra-Robert, M.; Fernández-Varo, G.; Morales-Ruiz, M.; Jiménez, W.; Puntes, V.; Casals, G. Cerium oxide nanoparticles: Advances in biodistribution, toxicity, and preclinical exploration. Small 2020, 16, 1907322.

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the fundings provided by the National Natural Science Foundation of China (Nos. 22104073 and 22004048), the Natural Science Foundation of Shandong Province of China (Nos. ZR2021QB119, 2022HWYQ-079, and ZR2020QB171), and the Youth Innovation Science and Technology Program of Shandong Provincial Universities (No. 2021KJ100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Pang, X., Zhang, X. et al. Nanomaterials disrupting cell-cell junctions towards various diseases. Nano Res. 16, 7053–7074 (2023). https://doi.org/10.1007/s12274-023-5455-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5455-y

Keywords

Navigation