Skip to main content
Log in

Polymer electrolytes reinforced by 2D fluorinated filler for all-solid-state Li-Fe-F conversion-type lithium metal batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The polyethylene oxide (PEO) based solid-state batteries are considered as promising candidates for the next-generation Li metal batteries with high energy density and safety. However, the low Li-ion conductivity and high-voltage endurability hinder the further applications of PEO-based electrolytes. To overcome these issues, herein two-dimensional (2D) CeF3 nanoplates with maximally exposed [001] crystal faces are introduced into the PEO matrix to expand the electrochemical window and improve Li-ion conduction and transport. The optimized crystal shape and crystal face anisotropy of CeF3 nanoplate filler reduce the crystallinity of composite solid polymer electrolyte (CSPE) via its Lewis acid-base interaction with ether oxygen of PEO. The Li-affinity [100] and Li-repellent [001] crystal faces of CeF3 nanoplates synergistically realize the dissociation of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), fast Li-adsorption/desorption, and Li+ migration. The optimized CSPE-0.1CeF3 membrane enables the achievement of Li metal batteries with high endurability and stability, from the kinetically favorable Li/Li symmetric cells with long-term cycling over 8000 h. The highly reversible Li/LiFePO4 cells exhibit a capacity retention of 109.2 mAh·g−1 after 1000 cycles at 1 C, corresponding to a low capacity fading rate of 0.026% per cycle. The conversion-type all-solid-state Li/CSPE-0.1CeF3/FeF3 cells show a high reversible capacity of 201.9 mAh·g−1 after long-term 600 cycles and of 231.1 mAh·g−1 at an ultra-high rate of 5 C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo, Y.; Wu, S. C.; He, Y. B.; Kang, F. Y.; Chen, L. Q.; Li, H.; Yang, Q. H. Solid-state lithium batteries: Safety and prospects. eScience 2022, 2, 138–163.

    Article  Google Scholar 

  2. Yang, Q. F.; Li, C. L. Li metal batteries and solid state batteries benefiting from halogen-based strategies. Energy Storage Mater. 2018, 14, 100–117.

    Article  Google Scholar 

  3. Li, Y. J.; Guo, K.; Zhao, J. T.; Li, C. L. Anode interface modification of lithium metal batteries: Benefiting from functional additives and conformal coatings. Chin. Sci. Bull. 2021, 66, 2971–2990.

    Article  Google Scholar 

  4. Wu, Q. P.; Zheng, Y. J.; Guan, X.; Xu, J.; Cao, F. H.; Li, C. L. Dynamical SEI reinforced by open-architecture MOF film with stereoscopic lithiophilic sites for high-performance lithium-metal batteries. Adv. Funct. Mater. 2021, 31, 2101034.

    Article  CAS  Google Scholar 

  5. Zhang, Y.; Meng, J. W.; Chen, K. Y.; Wu, H.; Hu, J. L.; Li, C. L. Garnet-based solid-state lithium fluoride conversion batteries benefiting from eutectic interlayer of superior wettability. ACS Energy Lett. 2020, 5, 1167–1176.

    Article  CAS  Google Scholar 

  6. Lei, M.; Fan, S. S.; Yu, Y. F.; Hu, J. L.; Chen, K. Y.; Gu, Y. P.; Wu, C. L.; Zhang, Y.; Li, C. L. NASICON-based solid state Li-Fe-F conversion batteries enabled by multi-interface-compatible sericin protein buffer layer. Energy Storage Mater 2022, 47, 551–560.

    Article  Google Scholar 

  7. Wu, X. X.; Zheng, Y. J.; Li, W. B.; Liu, Y. Y.; Zhang, Y.; Li, Y. J.; Li, C. L. Solid electrolytes reinforced by infinite coordination polymer nano-network for dendrite-free lithium metal batteries. Energy Storage Mater. 2021, 41, 436–447.

    Article  Google Scholar 

  8. Hu, J. L.; Chen, K. Y.; Yao, Z. G.; Li, C. L. Unlocking solid-state conversion batteries reinforced by hierarchical microsphere stacked polymer electrolyte. Sci. Bull. 2021, 66, 694–707.

    Article  CAS  Google Scholar 

  9. Liu, Q. Y.; Yang, G. J.; Li, X. Y.; Zhang, S. M.; Chen, R. J.; Wang, X. F.; Gao, Y. R.; Wang, Z. X.; Chen, L. Q. Polymer electrolytes based on interactions between [solvent-Li+] complex and solvent-modified polymer. Energy Storage Mater. 2022, 51, 443–452.

    Article  Google Scholar 

  10. Liang, J. Y.; Zeng, X. X.; Zhang, X. D.; Zuo, T. T.; Yan, M.; Yin, Y. X.; Shi, J. L.; Wu, X. W.; Guo, Y. G.; Wan, L. J. Engineering Janus interfaces of ceramic electrolyte via distinct functional polymers for stable high-voltage Li-metal batteries. J. Am. Chem. Soc. 2019, 141, 9165–9169.

    Article  CAS  Google Scholar 

  11. Wei, S. Y.; Ma, L.; Hendrickson, K. E.; Tu, Z. Y.; Archer, L. A. Metal-sulfur battery cathodes based on PAN-sulfur composites. J. Am. Chem. Soc. 2015, 137, 12143–12152.

    Article  CAS  Google Scholar 

  12. Wu, H. L.; Wang, J. L.; Zhao, Y.; Zhang, X. Q.; Xu, L.; Liu, H.; Cui, Y. X.; Cui, Y. H.; Li, C. L. A branched cellulose-reinforced composite polymer electrolyte with upgraded ionic conductivity for anode stabilized solid-state Li metal batteries. Sustainable Energy Fuels 2019, 3, 2642–2656.

    Article  CAS  Google Scholar 

  13. Zhang, D. C.; Xu, X. J.; Qin, Y. L.; Ji, S. M.; Huo, Y. P.; Wang, Z. S.; Liu, Z. B.; Shen, J. D.; Liu, J. Recent progress in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries. Chem. —Eur. J. 2020, 26, 1720–1736.

    Article  CAS  Google Scholar 

  14. Su, Y.; Rong, X. H.; Gao, A.; Liu, Y.; Li, J. W.; Mao, M. L.; Qi, X. G.; Chai, G. L.; Zhang, Q. H.; Suo, L. M. et al. Rational design of a topological polymeric solid electrolyte for high-performance all-solid-state alkali metal batteries. Nat. Commun. 2022, 13, 4181.

    Article  CAS  Google Scholar 

  15. Jaumaux, P.; Liu, Q.; Zhou, D.; Xu, X. F.; Wang, T. Y.; Wang, Y. Z.; Kang, F. Y.; Li, B. H.; Wang, G. X. Deep-eutectic-solvent-based self-healing polymer electrolyte for safe and long-life lithium-metal batteries. Angew. Chem., Int. Ed. 2020, 59, 9134–9142.

    Article  CAS  Google Scholar 

  16. Yue, L. P.; Ma, J.; Zhang, J. J.; Zhao, J. W.; Dong, S. M.; Liu, Z. H.; Cui, G. L.; Chen, L. Q. All solid-state polymer electrolytes for highperformance lithium ion batteries. Energy Storage Mater. 2016, 5, 139–164.

    Article  Google Scholar 

  17. Khurana, R.; Schaefer, J. L.; Archer, L. A.; Coates, G. W. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: A new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc. 2014, 136, 7395–7402.

    Article  CAS  Google Scholar 

  18. Choi, B. K.; Kim, Y. W.; Shin, H. K. Ionic conduction in PEO-PAN blend polymer electrolytes. Electrochim. Acta 2000, 45, 1371–1374.

    Article  CAS  Google Scholar 

  19. Zeng, X. X.; Yin, Y. X.; Li, N. W.; Du, W. C.; Guo, Y. G.; Wan, L. J. Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries. J. Am. Chem. Soc. 2016, 138, 15825–15828.

    Article  CAS  Google Scholar 

  20. Zhang, H. R.; Huang, L.; Xu, H. T.; Zhang, X. H.; Chen, Z.; Gao, C. H.; Lu, C. L.; Liu, Z.; Jiang, M. F.; Cui, G. L. A polymer electrolyte with a thermally induced interfacial ion-blocking function enables safety-enhanced lithium metal batteries. eScience 2022, 2, 201–208.

    Article  Google Scholar 

  21. Hu, J. L.; Yao, Z. G.; Chen, K. Y.; Li, C. L. High-conductivity open framework fluorinated electrolyte bonded by solidified ionic liquid wires for solid-state Li metal batteries. Energy Storage Mater. 2020, 28, 37–46.

    Article  Google Scholar 

  22. Wang, Y. J.; Pan, Y.; Kim, D. Conductivity studies on ceramic Li1.3Al0.3Ti1.7(PO4)3-filled PEO-based solid composite polymer electrolytes. J. Power Sources 2006, 159, 690–701.

    Article  CAS  Google Scholar 

  23. Zheng, J.; Tang, M. X.; Hu, Y. Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem., Int. Ed. 2016, 55, 12538–12542.

    Article  CAS  Google Scholar 

  24. Wu, J. F.; Guo, X. MOF-derived nanoporous multifunctional fillers enhancing the performances of polymer electrolytes for solid-state lithium batteries. J. Mater. Chem. A 2019, 7, 2653–2659.

    Article  CAS  Google Scholar 

  25. Wu, X. X.; Chen, K. Y.; Yao, Z. G.; Hu, J. L.; Huang, M. S.; Meng, J. W.; Ma, S. P.; Wu, T.; Cui, Y. H.; Li, C. L. Metal-organic framework reinforced polymer electrolyte with high cation transference number to enable dendrite-free solid state Li metal conversion batteries. J. Power Sources 2021, 501, 229946.

    Article  CAS  Google Scholar 

  26. Lin, D. C.; Liu, W.; Liu, Y. Y.; Lee, H. R.; Hsu, P. C.; Liu, K.; Cui, Y. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 2016, 16, 459–465.

    Article  CAS  Google Scholar 

  27. Sheng, O. W.; Jin, C. B.; Luo, J. M.; Yuan, H. D.; Huang, H.; Gan, Y. P.; Zhang, J.; Xia, Y.; Liang, C.; Zhang, W. K. et al. Mg2B2O5 nanowire enabled multifunctional solid-state electrolytes with high ionic conductivity, excellent mechanical properties, and flame-retardant performance. Nano Lett. 2018, 18, 3104–3112.

    Article  CAS  Google Scholar 

  28. Tang, W. J.; Tang, S.; Zhang, C. J.; Ma, Q. T.; Xiang, Q.; Yang, Y. W.; Luo, J. Y. Simultaneously enhancing the thermal stability, mechanical modulus, and electrochemical performance of solid polymer electrolytes by incorporating 2D sheets. Adv. Energy Mater. 2018, 8, 1800866.

    Article  Google Scholar 

  29. Shim, J.; Kim, H. J.; Kim, B. G.; Kim, Y. S.; Kim, D. G.; Lee, J. C. 2D boron nitride nanoflakes as a multifunctional additive in gel polymer electrolytes for safe, long cycle life and high rate lithium metal batteries. Energy Environ. Sci. 2017, 10, 1911–1916.

    Article  CAS  Google Scholar 

  30. Hu, J. L.; Tian, J.; Li, C. L. Nanostructured carbon nitride polymer-reinforced electrolyte to enable dendrite-suppressed lithium metal batteries. ACS Appl. Mater. Interfaces 2017, 9, 11615–11625.

    Article  CAS  Google Scholar 

  31. Li, C. X.; Liu, X. M.; Yang, P. P.; Zhang, C. M.; Lian, H. Z.; Lin, J. LaF3, CeF3, CeF3: Tb3+, and CeF3: Tb3+@LaF3 (core-shell) nanoplates: Hydrothermal synthesis and luminescence properties. J. Phys. Chem. C 2008, 112, 2904–2910.

    Article  CAS  Google Scholar 

  32. Hu, J. L.; Zhang, Y.; Cao, D. P.; Li, C. L. Dehydrating bronze iron fluoride as a high capacity conversion cathode for lithium batteries. J. Mater. Chem. A 2016, 4, 16166–16174.

    Article  CAS  Google Scholar 

  33. Chai, R. T.; Lian, H. Z.; Li, C. X.; Cheng, Z. Y.; Hou, Z. Y.; Huang, S. S.; Lin, J. In situ preparation and luminescent properties of CeF3 and CeF3:Tb3+ nanoparticles and transparent CeF3:Tb3+/PMMA nanocomposites in the visible spectral range. J. Phys. Chem. C 2009, 113, 8070–8076.

    Article  CAS  Google Scholar 

  34. Zhang, Y.; Chen, J. Controllable preparation of CeF3: Tb3+ nanostructures with different morphologies from an ionic liquid-based extraction system. Colloids Surf. A Physicochem. Eng. Aspects 2015, 470, 130–136.

    Article  CAS  Google Scholar 

  35. Wu, H.; Wu, Q. P.; Chu, F. L.; Hu, J. L.; Cui, Y. H.; Yin, C. L.; Li, C. L. Sericin protein as a conformal protective layer to enable air-endurable Li metal anodes and high-rate Li-S batteries. J. Power Sources 2019, 419, 72–81.

    Article  CAS  Google Scholar 

  36. Yang, Q. F.; Hu, J. L.; Meng, J. W.; Li, C. L. C-F-rich oil drop as a non-expendable fluid interface modifier with low surface energy to stabilize a Li metal anode. Energy Environ. Sci. 2021, 14, 3621–3631.

    Article  CAS  Google Scholar 

  37. Liu, J.; Shen, X. W.; Zhou, J. Q.; Wang, M. F.; Niu, C. Q.; Qian, T.; Yan, C. L. Nonflammable and high-voltage-tolerated polymer electrolyte achieving high stability and safety in 4.9 V-class lithium metal battery. ACS Appl. Mater. Interfaces 2019, 11, 45048–45056.

    Article  CAS  Google Scholar 

  38. Dey, A.; Karan, S.; De, S. K. Molecular interaction and ionic conductivity of polyethylene oxide-LiClO4 nanocomposites. J. Phys. Chem. Solids 2010, 71, 329–335.

    Article  CAS  Google Scholar 

  39. Wang, Z. N.; Wang, S.; Wang, A. L.; Liu, X.; Chen, J.; Zeng, Q. H.; Zhang, L.; Liu, W.; Zhang, L. Y. Covalently linked metal-organic framework (MOF)-polymer all-solid-state electrolyte membranes for room temperature high performance lithium batteries. J. Mater. Chem. A 2018, 6, 17227–17234.

    Article  CAS  Google Scholar 

  40. Wieczorek, W.; Raducha, D.; Zalewska, A.; Stevens, J. R. Effect of salt concentration on the conductivity of PEO-based composite polymeric electrolytes. J. Phys. Chem. B 1998, 102, 8725–8731.

    Article  CAS  Google Scholar 

  41. Lammert, M.; Wharmby, M. T.; Smolders, S.; Bueken, B.; Lieb, A.; Lomachenko, K. A.; Vos, D. D.; Stock, N. Cerium-based metal-organic frameworks with UiO-66 architecture: Synthesis, properties and redox catalytic activity. Chem. Commun. 2015, 51, 12578–12581.

    Article  CAS  Google Scholar 

  42. Lin, Y.; Wang, X. M.; Liu, J.; Miller, J. D. Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries. Nano Energy 2017, 31, 478–485.

    Article  CAS  Google Scholar 

  43. Huo, H. Y.; Wu, B.; Zhang, T.; Zheng, X. S.; Ge, L.; Xu, T. W.; Guo, X. X.; Sun, X. L. Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries. Energy Storage Mater. 2019, 18, 59–67.

    Article  Google Scholar 

  44. Chen, N.; Dai, Y. J.; Xing, Y.; Wang, L. L.; Guo, C.; Chen, R. J.; Guo, S. J.; Wu, F. Biomimetic ant-nest ionogel electrolyte boosts the performance of dendrite-free lithium batteries. Energy Environ. Sci. 2017, 10, 1660–1667.

    Article  CAS  Google Scholar 

  45. Suo, L. M.; Oh, D.; Lin, Y. X.; Zhuo, Z. Q.; Borodin, O.; Gao, T.; Wang, F.; Kushima, A.; Wang, Z. Q.; Kim, H. C. et al. How solid-electrolyte interphase forms in aqueous electrolytes. J. Am. Chem. Soc. 2017, 139, 18670–18680.

    Article  CAS  Google Scholar 

  46. Liang, Y.; Liu, Y.; Chen, D.; Dong, L.; Guang, Z.; Liu, J.; Yuan, B.; Yang, M.; Dong, Y.; Li, Q. et al. Hydroxyapatite functionalization of solid polymer electrolytes for high-conductivity solid-state lithiumion batteries. Mater. Today Energy 2021, 20, 100694.

    Article  CAS  Google Scholar 

  47. Wu, H.; Yao, Z. G.; Wu, Q. P.; Fan, S. S.; Yin, C. L.; Li, C. L. Confinement effect and air tolerance of Li plating by lithiophilic poly(vinyl alcohol) coating for dendrite-free Li metal batteries. J. Mater. Chem. A 2019, 7, 22257–22264.

    Article  CAS  Google Scholar 

  48. Li, C. L.; Chen, K. Y.; Zhou, X. J.; Maier, J. Electrochemically driven conversion reaction in fluoride electrodes for energy storage devices. npj Comput. Mater. 2018, 4, 22.

    Article  Google Scholar 

  49. Chen, K. Y.; Lei, M.; Yao, Z. G.; Zheng, Y. J.; Hu, J. L.; Lai, C. Z.; Li, C. L. Construction of solid-liquid fluorine transport channel to enable highly reversible conversion cathodes. Sci. Adv. 2021, 7, eabj1491.

    Article  CAS  Google Scholar 

  50. Wang, L. P.; Wu, Z. R.; Zou, J.; Gao, P.; Niu, X. B.; Li, H.; Chen, L. Q. Li-free cathode materials for high energy density lithium batteries. Joule 2019, 3, 2086–2102.

    Article  CAS  Google Scholar 

  51. Zhang, Y.; Meng, J. W.; Chen, K. Y.; Wu, Q. P.; Wu, X. X.; Li, C. L. Behind the candelabra: A facile flame vapor deposition method for interfacial engineering of garnet electrolyte to enable ultralong cycling solid-state Li-FeF3 conversion batteries. ACS Appl. Mater. Interfaces 2020, 12, 33729–33739.

    Article  CAS  Google Scholar 

  52. Zhang, D. C.; Xu, X. J.; Huang, X. Y.; Shi, Z. C.; Wang, Z. S.; Liu, Z. B.; Hu, R. Z.; Liu, J.; Zhu, M. A flexible composite solid electrolyte with a highly stable interphase for dendrite-free and durable all-solid-state lithium metal batteries. J. Mater. Chem. A 2020, 8, 18043–18054.

    Article  CAS  Google Scholar 

  53. Zhang, D. C.; Liu, Z. B.; Wu, Y. W.; Ji, S. M.; Yuan, Z. X.; Liu, J.; Zhu, M. In situ construction a stable protective layer in polymer electrolyte for ultralong lifespan solid-state lithium metal batteries. Adv. Sci. 2022, 9, 2104277.

    Article  CAS  Google Scholar 

  54. Li, C. C.; Zhang, X. S.; Zhu, Y. H.; Zhang, Y.; Xin, S.; Wan, L. J.; Guo, Y. G. Modulating the lithiophilicity at electrode/electrolyte interface for high-energy Li-metal batteries. Energy Mater. 2022, 1, 100017.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21975276 and 52102329) and Shanghai Science and Technology Committee (No. 20520710800). C. L. appreciates the support by Program of Shanghai Academic Research Leader (No. 21XD1424400).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoxue Wu or Chilin Li.

Electronic supplementary material

12274_2023_5406_MOESM1_ESM.pdf

Polymer electrolytes reinforced by 2D fluorinated filler for all-solid-state Li-Fe-F conversion-type lithium metal batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, M., Wu, X., Liu, Y. et al. Polymer electrolytes reinforced by 2D fluorinated filler for all-solid-state Li-Fe-F conversion-type lithium metal batteries. Nano Res. 16, 8469–8477 (2023). https://doi.org/10.1007/s12274-023-5406-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5406-7

Keywords

Navigation