Skip to main content
Log in

Designing heterostructured FeP—CoP for oxygen evolution reaction: Interface engineering to enhance electrocatalytic performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

It is significant to develop highly efficient electrocatalysts for energy conversion systems. Interface engineering is one of the most feasible approaches to effectively enhance the electrocatalytic activity. Herein, the density functional theory (DFT) calculations predict that the potential barriers of Fe sites at the interface of FeP—CoP heterostructures are lower than that of Fe sites in FeP nanoparticles (NPs), Co sites in CoP NPs, or Co sites in heterostructures. Motivated by the DFT calculation results, FeP—CoP heterostructures have been designed and synthesized by a metal—organic frameworks (MOFs) confined-phosphorization method. The FeP—CoP exhibits the lowest overpotential of 230 mV at the current density of 10 mA·cm−2 for oxygen evolution reaction (OER), compared with FeP (470 mV) and CoP (340 mV), which outperforms most of transition metal-based catalysts. The Tafel analysis of FeP—CoP heterostructures shows an improved reaction kinetic pathway with the smallest slope of 90.3 mV·dec1, as compared to the Tafel slopes of FeP NPs (137 mV·dec1) and CoP NPs (114 mV·dec1). And the FeP—CoP shows extraordinary long-term stability over 24 h. The excellent activity and long-term stability of FeP—CoP derive from the synergistic effect between FeP and CoP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin, B. Q.; Li, Z. Towards world’s low carbon development: The role of clean energy. Appl. Energy 2022, 307, 118160.

    Google Scholar 

  2. Yin, J.; Jin, J.; Lin, H. H.; Yin, Z. Y.; Li, J. Y.; Lu, M.; Guo, L. C.; Xi, P. X.; Tang, Y.; Yan, C. H. Optimized metal chalcogenides for boosting water splitting. Adv. Sci. 2020, 7, 1903070.

    CAS  Google Scholar 

  3. Zhou, J.; Wang, F. F.; Wang, H. Q.; Hu, S. X.; Zhou, W. J.; Liu, H. Ferrocene-induced switchable preparation of metal—nonmetal codoped tungsten nitride and carbide nanoarrays for electrocatalytic HER in alkaline and acid media. Nano Res., in press, https://doi.org/10.1007/s12274-022-4901-6.

  4. Liu, M. M.; Li, H. X.; Liu, S. J.; Wang, L. L.; Xie, L. B.; Zhuang, Z. C.; Sun, C.; Wang, J.; Tang, M.; Sun, S. J. et al. Tailoring activation sites of metastable distorted 1T’-phase MoS2 by Ni doping for enhanced hydrogen evolution. Nano Res. 2022, 15, 5946–5952.

    CAS  Google Scholar 

  5. Jiang, J. Z.; Bai, S. S.; Yang, M. Q.; Zou, J.; Li, N.; Peng, J. H.; Wang, H. T.; Xiang, K.; Liu, S.; Zhai, T. Y. Strategic design and fabrication of MXenes-Ti3CNCl2@CoS2 core—shell nanostructure for high-efficiency hydrogen evolution. Nano Res. 2022, 15, 5977–5986.

    CAS  Google Scholar 

  6. Hu, C. L.; Zhang, L.; Gong, J. L. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ. Sci. 2019, 12, 2620–2645.

    CAS  Google Scholar 

  7. Liu, K. L.; Wang, F. M.; He, P.; Shifa, T. A.; Wang, Z. X.; Cheng, Z. Z.; Zhan, X. Y.; He, J. The role of active oxide species for electrochemical water oxidation on the surface of 3d-metal phosphides. Adv. Energy Mater. 2018, 8, 1703290.

    Google Scholar 

  8. Guo, F. J.; Zhang, M. Y.; Yi, S. C.; Li, X. X.; Xin, R.; Yang, M.; Liu, B.; Chen, H. B.; Li, H. M.; Liu, Y. J. Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated N-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Res. Energy 2022, 1, e9120027.

    Google Scholar 

  9. Gong, L. Q.; Yang, H.; Wang, H. M.; Qi, R. J.; Wang, J. L.; Chen, S. H.; You, B.; Dong, Z. H.; Liu, H. F.; Xia, B. Y. Corrosion formation and phase transformation of nickel-iron hydroxide nanosheets array for efficient water oxidation. Nano Res. 2021, 14, 4528–4533.

    CAS  Google Scholar 

  10. Yu, L.; Zhou, H. Q.; Sun, J. Y.; Qin, F.; Yu, F.; Bao, J. M.; Yu, Y.; Chen, S.; Ren, Z. F. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ. Sci. 2017, 10, 1820–1827.

    CAS  Google Scholar 

  11. Liu, G.; Gao, X. S.; Wang, K. F.; He, D. Y.; Li, J. P. Mesoporous nickel-iron binary oxide nanorods for efficient electrocatalytic water oxidation. Nano Res. 2017, 10, 2096–2105.

    CAS  Google Scholar 

  12. Zhang, L. C.; Liang, J.; Yue, L. C.; Dong, K.; Li, J.; Zhao, D. L.; Li, Z. R.; Sun, S. J.; Luo, Y. S.; Liu, Q. et al. Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation. Nano Res. Energy 2022, 1, e9120028.

    Google Scholar 

  13. Xue, Y. R.; Zuo, Z. C.; Li, Y. J.; Liu, H. B.; Li, Y. L. Graphdiyne-supported NiCo2S4 nanowires: A highly active and stable 3D bifunctional electrode material. Small 2017, 13, 1700936.

    Google Scholar 

  14. Kou, Z. K.; Wang, T. T.; Gu, Q. L.; Xiong, M.; Zheng, L. R.; Li, X.; Pan, Z. H.; Chen, H.; Verpoort, F.; Cheetham, A. K. et al. Rational design of holey 2D nonlayered transition metal carbide—nitride heterostructure nanosheets for highly efficient water oxidation. Adv. Energy Mater. 2019, 9, 1803768.

    Google Scholar 

  15. Zhang, Y. Q.; Ouyang, B.; Xu, J.; Jia, G. C.; Chen, S.; Rawat, R. S.; Fan, H. J. Rapid synthesis of cobalt nitride nanowires: Highly efficient and low-cost catalysts for oxygen evolution. Angew. Chem., Int. Ed. 2016, 55, 8670–8674.

    CAS  Google Scholar 

  16. Tang, Y.-J.; Zou, Y.; Zhu, D. D. Efficient water oxidation using an Fe-doped nickel telluride-nickel phosphide electrocatalyst by partial phosphating. J. Mater. Chem. A 2022, 10, 12438–12446.

    CAS  Google Scholar 

  17. Shan, J. Q.; Zheng, Y.; Shi, B. Y.; Davey, K.; Qiao, S.-Z. Regulating electrocatalysts via surface and interface engineering for acidic water electrooxidation. ACS Energy Lett. 2019, 4, 2719–2730.

    CAS  Google Scholar 

  18. Hu, W. P.; Zhang, H.; Salaita, K.; Sirringhaus, H. SmartMat: Smart materials to smart world. SmartMat 2020, 1, e1014.

    Google Scholar 

  19. Lee, M. Y.; Ha, H.; Cho, K. H.; Seo, H.; Park, S.; Lee, Y. H.; Kwon, S.-J.; Lee, T.-W.; Nam, K. T. Importance of interfacial band structure between the substrate and Mn3O4 nanocatalysts during electrochemical water oxidation. ACS Catal. 2020, 10, 1237–1245.

    CAS  Google Scholar 

  20. Wang, P. C.; Wang, B. G. Designing self-supported electrocatalysts for electrochemical water splitting: Surface/interface engineering toward enhanced electrocatalytic performance. ACS Appl. Mater. Interfaces 2021, 13, 59593–59617.

    CAS  Google Scholar 

  21. Yang, N. W.; Chen, D.; Cui, P. L.; Lu, T. Y.; Liu, H.; Hu, C. Q.; Xu, L.; Yang, J. Heterogeneous nanocomposites consisting of Pt3Co alloy particles and CoP2 nanorods towards high-efficiency methanol electro-oxidation. SmartMat 2021, 2, 234–245.

    CAS  Google Scholar 

  22. Cui, Y.; Guo, X. Y.; Zhang, J.; Li, X. A.; Zhu, X. B.; Huang, W. Di-defects synergy boost electrocatalysis hydrogen evolution over two-dimensional heterojunctions. Nano Res. 2022, 15, 677–684.

    CAS  Google Scholar 

  23. Yan, M. L.; Zhao, Z. Y.; Cui, P. X.; Mao, K.; Chen, C.; Wang, X. Z.; Wu, Q.; Yang, H.; Yang, L. J.; Hu, Z. Construction of hierarchical FeNi3@(Fe, Ni)S2 core-shell heterojunctions for advanced oxygen evolution. Nano Res. 2021, 14, 4220–4226.

    CAS  Google Scholar 

  24. Jiang, Y.; Li, Y. R.; Jiang, Y. M.; Liu, X. R.; Shen, W.; Li, M.; He, R. X. Interface engineering of FeCo LDH@NiCoP nanowire heterostructures for highly efficient and stable overall water splitting. Chin. Chem. Lett. 2022, 33, 4003–4007.

    CAS  Google Scholar 

  25. Zhu, Y. T.; Gao, Z. Q.; Zhang, Z. C.; Lin, T.; Zhang, Q. H.; Liu, H. L.; Gu, L.; Hu, W. P. Selectivity regulation of CO2 electroreduction on asymmetric AuAgCu tandem heterostructures. Nano Res. 2022, 15, 7861–7867.

    CAS  Google Scholar 

  26. Wei, J. M.; Zhou, M.; Long, A. C.; Xue, Y. M.; Liao, H. B.; Wei, C.; Xu, Z. J. Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nanomicro Lett. 2018, 10, 75.

    CAS  Google Scholar 

  27. Das, P.; Fu, Q.; Bao, X. H.; Wu, Z.-S. Recent advances in the preparation, characterization, and applications of two-dimensional heterostructures for energy storage and conversion. J. Mater. Chem. A 2018, 6, 21747–21784.

    CAS  Google Scholar 

  28. Huang, Z.; Ariando; Wang, X. R.; Rusydi, A.; Chen, J. S.; Yang, H.; Venkatesan, T. Interface engineering and emergent phenomena in oxide heterostructures. Adv. Mater. 2018, 30, e1802439.

    Google Scholar 

  29. Shang, B.; Jiao, L.; Bao, Q. L.; Li, C. M.; Cui, X. Q. Strong interactions in molybdenum disulfide heterostructures boosting the catalytic performance of water splitting: A short review. Nano Mater. Sci. 2019, 1, 231–245.

    Google Scholar 

  30. Zhang, J.; Zhang, Q. Y.; Feng, X. L. Support and interface effects in water-splitting electrocatalysts. Adv. Mater. 2019, 31, 1808167.

    Google Scholar 

  31. Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R. H.; Liu, S. H.; Zhuang, X. D.; Feng, X. L. Interface engineering of MoS2-Ni3S2 heterostructures for highly enhanced electrochemical overall-watersplitting activity. Angew. Chem., Int. Ed. 2016, 55, 6702–6707.

    CAS  Google Scholar 

  32. Chen, D.; Lu, R. H.; Pu, Z. H.; Zhu, J. W.; Li, H.-W.; Liu, F.; Hu, S.; Luo, X.; Wu, J. S.; Zhao, Y. et al. Ru-doped 3D flower-like bimetallic phosphide with a climbing effect on overall water splitting. Appl. Catal. B: Environ. 2020, 279, 119396.

    CAS  Google Scholar 

  33. Guan, B. Y.; Yu, L.; Lou, X. W. A dual-metal-organic-framework derived electrocatalyst for oxygen reduction. Energy Environ. Sci. 2016, 9, 3092–3096.

    CAS  Google Scholar 

  34. Kresse, G.; Furthmüller, J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.

    CAS  Google Scholar 

  35. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Google Scholar 

  36. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

    CAS  Google Scholar 

  37. Cao, X.-M.; Burch, R.; Hardacre, C.; Hu, P. An understanding of chemoselective hydrogenation on crotonaldehyde over Pt (111) in the free energy landscape: The microkinetics study based on first-principles calculations. Catal. Today 2011, 165, 71–79.

    CAS  Google Scholar 

  38. Guo, C. X.; Fu, X. Y.; Xiao, J. P. Theoretical insights on the synergy and competition between thermochemical and electrochemical steps in oxygen electroreduction. J. Phys. Chem. C 2020, 124, 25796–25804.

    CAS  Google Scholar 

  39. Exner, K. S.; Over, H. Beyond the rate-determining step in the oxygen evolution reaction over a single-crystalline IrO2 (110) model electrode: Kinetic scaling relations. ACS Catal. 2019, 9, 6755–6765.

    CAS  Google Scholar 

  40. Liu, Y. H.; Ran, N.; Ge, R. Y.; Liu, J. J.; Li, W. X.; Chen, Y. Y.; Feng, L. Y.; Che, R. C. Porous Mn-doped cobalt phosphide nanosheets as highly active electrocatalysts for oxygen evolution reaction. Chem. Eng. J. 2021, 425, 131642.

    CAS  Google Scholar 

  41. Ji, P. X.; Jin, H. H.; Xia, H. L.; Luo, X.; Zhu, J. K.; Pu, Z. H.; Mu, S. C. Double metal diphosphide pair nanocages coupled with P-doped carbon for accelerated oxygen and hydrogen evolution kinetics. ACS Appl. Mater. Interfaces 2020, 12, 727–733.

    CAS  Google Scholar 

  42. Yu, X.; Zhao, Z. X.; Pei, C. G. Surface oxidized iron-nickel nanorods anchoring on graphene architectures for oxygen evolution reaction. Chin. Chem. Lett. 2021, 32, 3579–3583.

    CAS  Google Scholar 

  43. Chen, F. H.; Zhang, Z. Q.; Liang, W. W.; Qin, X. Y.; Zhang, Z.; Jiang, L. Y. Synthesis of Co4S3/Co9S8 nanosheets and comparison study toward the OER properties induced by different metal ion doping. Chin. Chem. Lett. 2022, 33, 1395–1402.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22101289 and 22275138), the Hundred Talents Programs in Chinese Academy of Science, the National Key Research and Development Project (No. 2021YFA1502200), the Bellwethers Project of Zhejiang Research and Development Plan (No. 2022C01158), and the Ningbo Yongjiang Talent Introduction Programme (No. 2021A-111-G).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huiling Liu or Peilei He.

Electronic Supplementary Material

12274_2023_5390_MOESM1_ESM.pdf

Designing heterostructured FeP—CoP for oxygen evolution reaction: Interface engineering to enhance electrocatalytic performance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, S., Zhang, A., Zhou, Q. et al. Designing heterostructured FeP—CoP for oxygen evolution reaction: Interface engineering to enhance electrocatalytic performance. Nano Res. 16, 6601–6607 (2023). https://doi.org/10.1007/s12274-023-5390-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5390-y

Keywords

Navigation