Skip to main content
Log in

3D-printed mechanically strong and extreme environment adaptable boron nitride/cellulose nanofluidic macrofibers

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Fibrous nanofluidic materials are ideal building blocks for implantable electrode, biomimetic actuator, and wearable electronics due to their favorable features of intrinsic flexibility and unidirectional ion transport. However, the large-scale preparation of fibrous nanofluidic materials with desirable mechanical strength and good environment adaptability for practical use remains challenging. Herein, by fully taking advantage of the attractive mechanical, structural, and chemical features of boron nitride (BN) nanosheet and nanofibrillated cellulose (NFC), a scalable and cost-effective three-dimensional (3D) printed macrofiber featuring abundant vertically aligned nanofluidic channels is demonstrated to exhibit a good combination of high tensile strength of 100 MPa, thermal stability of up to 230 °C, and ionic conductivity of 1.8 × 10−4 S/cm at low salt concentrations (< 10−3 M). In addition, the versatile surface chemistry of cellulose allows us to stabilize the macrofiber at the molecular level via a facile post-cross-linking method, which eventually enables the stable operation of the modified macrofiber in various extreme environments such as strong acidic, strong alkaline, and high temperature. We believe this work implies a promising guideline for designing and manufacturing fibrous nanodevices towards extreme environment operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schoch, R. B.; Han, J.; Renaud, P. Transport phenomena in nanofluidics. Rev. Mod. Phys. 2008, 80, 839–883.

    CAS  Google Scholar 

  2. Koltonow, A. R.; Huang, J. X. Two-dimensional nanofluidics. Science 2016, 351, 1395–1396.

    CAS  Google Scholar 

  3. Hou, Y. Q.; Hou, X. Bioinspired nanofluidic iontronics. Science 2021, 373, 628–629.

    CAS  Google Scholar 

  4. Chen, C. J.; Hu, L. B. Nanoscale ion regulation in wood-based structures and their device applications. Adv. Mater. 2021, 33, 2002890.

    CAS  Google Scholar 

  5. Sparreboom, W.; van den Berg, A.; Eijkel, J. C. T. Principles and applications of nanofluidic transport. Nat. Nanotechnol. 2009, 4, 713–720.

    CAS  Google Scholar 

  6. Xie, Q.; Alibakhshi, M. A.; Jiao, S. P.; Xu, Z. P.; Hempel, M.; Kong, J.; Park, H. G.; Duan, C. H. Fast water transport in graphene nanofluidic channels. Nat. Nanotechnol. 2018, 13, 238–245.

    CAS  Google Scholar 

  7. Raidongia, K.; Huang, J. X. Nanofluidic ion transport through reconstructed layered materials. J. Am. Chem. Soc. 2022, 134, 16528–16531.

    Google Scholar 

  8. Xiao, K.; Jiang, L.; Antonietti, M. Ion transport in nanofluidic devices for energy harvesting. Joule 2019, 3, 2364–2380.

    CAS  Google Scholar 

  9. Li, S.; Li, Y. G.; Shao, Y. L.; Wang, H. Z. Emerging two-dimensional materials constructed nanofluidic fiber: Properties, preparation and applications. Adv. Fiber Mater. 2022, 3, 129–144.

    Google Scholar 

  10. Li, S.; Fan, Z. D.; Wu, G. Q.; Shao, Y. Y.; Xia, Z.; Wei, C. H.; Shen, F.; Tong, X. L.; Yu, J. C.; Chen, K. et al. Assembly of nanofluidic MXene fibers with enhanced ionic transport and capacitive charge storage by flake orientation. ACS Nano 2021, 15, 7821–7832.

    CAS  Google Scholar 

  11. Zhou, Y. B.; Chen, C. J.; Zhang, X.; Liu, D. P.; Xu, L. S.; Dai, J. Q.; Liou, S. C.; Wang, Y. L.; Li, C.; Xie, H. et al. Decoupling ionic and electronic pathways in low-dimensional hybrid conductors. J. Am. Chem. Soc. 2019, 141, 17830–17837.

    CAS  Google Scholar 

  12. Lao, J. C.; Lv, R. J.; Gao, J.; Wang, A. X.; Wu, J. S.; Luo, J. Y. Aqueous stable Ti3C2 MXene membrane with fast and photoswitchable nanofluidic transport. ACS Nano 2018, 12, 12464–12471.

    CAS  Google Scholar 

  13. Ding, L.; Xiao, D.; Lu, Z.; Deng, J. J.; Wei, Y. Y.; Caro, J.; Wang, H. H. Oppositely charged Ti3C2Tx MXene membranes with 2D nanofluidic channels for osmotic energy harvesting. Angew. Chem., Int. Ed. 2020, 59, 8720–8726.

    CAS  Google Scholar 

  14. Xin, G. Q.; Zhu, W. G.; Deng, Y. X.; Cheng, J.; Zhang, L. T.; Chung, A. J.; De, S.; Lian, J. Microfluidics-enabled orientation and microstructure control of macroscopic graphene fibres. Nat. Nanotechnol. 2019, 13, 168–175.

    Google Scholar 

  15. Yeh, C. N.; Raidongia, K.; Shao, J. J.; Yang, Q. H.; Huang, J. X. On the origin of the stability of graphene oxide membranes in water. Nat. Chem. 2015, 7, 166–170.

    CAS  Google Scholar 

  16. Fan, X. B.; Peng, W. C.; Li, Y.; Li, X. Y.; Wang, S. L.; Zhang, G. L.; Zhang, F. B. Deoxygenation of exfoliated graphite oxide under alkaline conditions: A green route to graphene preparation. Adv. Mater. 2008, 10, 4490–4493.

    Google Scholar 

  17. Qin, S.; Liu, D.; Wang, G.; Portehault, D.; Garvey, C. J.; Gogotsi, Y.; Lei, W. W.; Chen, Y. High and stable ionic conductivity in 2D nanofluidic ion channels between boron nitride layers. J. Am. Chem. Soc. 2017, 139, 6314–6320.

    CAS  Google Scholar 

  18. Yang, L. S.; Wang, D. S.; Liu, M. S.; Liu, H. M.; Tan, J. Y.; Wang, Z. Y.; Zhou, H. Y.; Yu, Q. M.; Wang, J. Y.; Lin, J. H. et al. Glue-assisted grinding exfoliation of large-size 2D materials for insulating thermal conduction and large-current-density hydrogen evolution. Mater. Today 2021, 51, 145–154.

    CAS  Google Scholar 

  19. Paton, K. R.; Varrla, E.; Backes, C.; Smith, R. J.; Khan, U.; O’Neill, A.; Boland, C.; Lotya, M.; Istrate, O. M.; King, P. et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 2014, 13, 624–630.

    CAS  Google Scholar 

  20. Zhang, C.; Tan, J. Y.; Pan, Y. K.; Cai, X. K.; Zou, X. L.; Cheng, H. M.; Liu, B. L. Mass production of 2D materials by intermediate-assisted grinding exfoliation. Natl. Sci. Rev. 2020, 7, 324–332.

    CAS  Google Scholar 

  21. Zhu, H. L.; Li, Y. Y.; Fang, Z. Q.; Xu, J. J.; Cao, F. Y.; Wan, J. Y.; Preston, C.; Yang, B.; Hu, L. B. Highly thermally conductive papers with percolative layered boron nitride nanosheets. ACS Nano 2014, 8, 3606–3613.

    CAS  Google Scholar 

  22. Olivier, C.; Moreau, C.; Bertoncini, P.; Bizot, H.; Chauvet, O.; Cathala, B. Cellulose nanocrystal-assisted dispersion of luminescent single-walled carbon nanotubes for layer-by-layer assembled hybrid thin films. Langmuir 2012, 28, 12463–12471.

    CAS  Google Scholar 

  23. Zeng, X. L.; Sun, J. J.; Yao, Y. M.; Sun, R.; Xu, J. B.; Wong, C. P. A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity. ACS Nano 2017, 11, 5167–5178.

    CAS  Google Scholar 

  24. Zhi, C. Y.; Bando, Y.; Tang, C. C.; Kuwahara, H.; Golberg, D. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater. 2009, 21, 2889–2893.

    CAS  Google Scholar 

  25. Zhou, G. Q.; Li, M. C.; Liu, C. Z.; Wu, Q. L.; Mei, C. T. 3D printed Ti3C2Tx MXene/cellulose nanofiber architectures for solid-state supercapacitors: Ink rheology, 3D printability, and electrochemical performance. Adv. Funct. Mater. 2022, 32, 2109593.

    CAS  Google Scholar 

  26. Hyun, W. J.; Thomas, C. M.; Chaney, L. E.; Mazarin de Moraes, A. C.; Hersam, M. C. Screen-printable hexagonal boron nitride ionogel electrolytes for mechanically deformable solid-state lithium-ion batteries. Nano Lett. 2022, 22, 5372–5378.

    CAS  Google Scholar 

  27. Evans, D. A.; McGlynn, A. G.; Towlson, B. M.; Gunn, M.; Jones, D.; Jenkins, T. E.; Winter, R.; Poolton, N. R. J. Determination of the optical band-gap energy of cubic and hexagonal boron nitride using luminescence excitation spectroscopy. J. Phys. Condens. Matter 2008, 20, 075233.

    Google Scholar 

  28. Paajanen, A.; Ceccherini, S.; Maloney, T.; Ketoja, J. A. Chirality and bound water in the hierarchical cellulose structure. Cellulose 2019, 26, 5877–5892.

    CAS  Google Scholar 

  29. Ling, S. J.; Chen, W. S.; Fan, Y. M.; Zheng, K.; Jin, K.; Yu, H. P.; Buehler, M. J.; Kaplan, D. L. Biopolymer nanofibrils: Structure, modeling, preparation, and applications. Prog. Polym. Sci. 2018, 85, 1–56.

    CAS  Google Scholar 

  30. Pakdel, A.; Bando, Y.; Golberg, D. Nano boron nitride flatland. Chem. Soc. Rev. 2014, 43, 934–959.

    CAS  Google Scholar 

  31. Wang, D. C.; Yu, H. Y.; Qi, D. M.; Wu, Y. H.; Chen, L. M.; Li, Z. H. Confined chemical transitions for direct extraction of conductive cellulose nanofibers with graphitized carbon shell at low temperature and pressure. J. Am. Chem. Soc. 2021, 143, 11620–11630.

    CAS  Google Scholar 

  32. Shen, D. K.; Gu, S. The mechanism for thermal decomposition of cellulose and its main products. Bioresour. Technol. 2009, 100, 6496–6504.

    CAS  Google Scholar 

  33. Chen, J. J.; Xin, W. W.; Chen, W. P.; Zhao, X. L.; Qian, Y. C.; Kong, X. Y.; Jiang, L.; Wen, L. P. Biomimetic nanocomposite membranes with ultrahigh ion selectivity for osmotic power conversion. ACS Cent. Sci. 2021, 7, 1486–1492.

    CAS  Google Scholar 

  34. Liu, P.; Zhou, T.; Yang, L. S.; Zhu, C. C.; Teng, Y. F.; Kong, X. Y.; Wen, L. P. Synergy of light and acid-base reaction in energy conversion based on cellulose nanofiber intercalated titanium carbide composite nanofluidics. Energy Environ. Sci. 2021, 14, 4400–4409.

    CAS  Google Scholar 

  35. Li, T.; Li, S. X.; Kong, W. Q.; Chen, C. J.; Hitz, E.; Jia, C.; Dai, J. Q.; Zhang, X.; Briber, R.; Siwy, Z. et al. A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Sci. Adv. 2019, 5, eaau4238.

    CAS  Google Scholar 

  36. Chen, G. G.; Li, T.; Chen, C. J.; Kong, W. Q.; Jiao, M. L.; Jiang, B.; Xia, Q. Q.; Liang, Z. Q.; Liu, Y.; He, S. M. et al. Scalable wood hydrogel membrane with nanoscale channels. ACS Nano 2021, 15, 11244–11252.

    CAS  Google Scholar 

  37. Wang, C. W.; Wang, S.; Chen, G.; Kong, W. Q.; Ping, W. W.; Dai, J. Q.; Pastel, G.; Xie, H.; He, S. M.; Das, S. et al. Flexible, biocompatible nanofluidic ion conductor. Chem. Mater. 2018, 30, 7707–7713.

    CAS  Google Scholar 

  38. Hanif, Z.; Choi, D.; Tariq, M. Z.; La, M.; Park, S. J. Water-stable flexible nanocellulose chiral nematic films through acid vapor cross-linked glutaraldehyde for chiral nematic templating. ACS Macro Lett. 2020, 9, 146–151.

    CAS  Google Scholar 

  39. Tang, A. M.; Yan, C. Y.; Chen, S. Y.; Li, D. G. Acid-catalyzed crosslinking of cellulose nanofibers with glutaraldehyde to improve the water resistance of nanopaper. J. Bioresour. Bioprod. 2018, 3, 59–64.

    CAS  Google Scholar 

  40. Jeon, J. G.; Kim, H. C.; Palem, R. R.; Kim, J.; Kang, T. J. Cross-linking of cellulose nanofiber films with glutaraldehyde for improved mechanical properties. Mater. Lett. 2019, 250, 99–102.

    CAS  Google Scholar 

  41. Hou, Y. Z.; Guan, Q. F.; Xia, J.; Ling, Z. C.; He, Z. Z.; Han, Z. M.; Yang, H. B.; Gu, P.; Zhu, Y. B.; Yu, S. H. et al. Strengthening and toughening hierarchical nanocellulose via humidity-mediated interface. ACS Nano 2021, 15, 1310–1320.

    CAS  Google Scholar 

  42. Gao, M. H.; Xie, X.; Huang, T.; Zhang, N.; Wang, Y. Glutaraldehyde-assisted crosslinking in regenerated cellulose films toward high dielectric and mechanical properties. Cellulose 2022, 29, 8177–8194.

    CAS  Google Scholar 

  43. Hong, S.; Ming, F. W.; Shi, Y.; Li, R. Y.; Kim, I. S.; Tang, C. Y.; Alshareef, H. N.; Wang, P. Two-dimensional Ti3C2Tx MXene membranes as nanofluidic osmotic power generators. ACS Nano 2019, 13, 8917–8925.

    CAS  Google Scholar 

  44. Abraham, J.; Vasu, K. S.; Williams, C. D.; Gopinadhan, K.; Su, Y.; Cherian, C. T.; Dix, J.; Prestat, E.; Haigh, S. J.; Grigorieva, I. V. et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 2017, 12, 546–550.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the Test Center and Core Facility of Wuhan University for assistance with material characterizations. The authors acknowledge Q. Xia for the helpful suggestions on the graphical illustration of the cross-linking process and H. Liu for TG-FTIR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoji Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Gao, T., Mi, R. et al. 3D-printed mechanically strong and extreme environment adaptable boron nitride/cellulose nanofluidic macrofibers. Nano Res. 16, 7609–7617 (2023). https://doi.org/10.1007/s12274-023-5383-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5383-x

Keywords

Navigation