Skip to main content
Log in

Graphitic carbon nitride/ferroferric oxide/reduced graphene oxide nanocomposite as highly active visible light photocatalyst

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

High stability and efficient charge separation are two critical factors to construct high-performance photocatalysts. Here, an efficient strategy was provided to fabricate the nanocomposite of graphitic carbon nitride/ferroferric oxide/reduced graphene oxide (g-C3N4/Fe3O4/RGO). The degradation of rhodamine B (RhB) by g-C3N4/Fe3O4/RGO nanocomposite followed the pseudo-first-order kinetics. The g-C3N4/Fe3O4/RGO nanocomposite exhibited excellent stability and magnetically separable performance. It was ascertained that the quantum efficiency and separation efficiency of photoexcited charge carriers of g-C3N4/Fe3O4/RGO nanocomposite were obviously improved. Particularly, the g-C3N4/Fe3O4/RGO nanocomposite with 3 wt.% RGO presented 100% degradation efficiency under visible light irradiation for 75 min. The remarkable photocatalytic degradation activity is attributed to the synergistic interactions among g-C3N4, Fe3O4, and RGO, along with the efficient interfacial charge separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, G. L.; Bi, W. X.; Zhang, Q. M.; Dong, X. L.; Zhang, X. F. Hydrothermal carbonation carbon-based photocatalysis under visible light: Modification for enhanced removal of organic pollutant and novel insight into the photocatalytic mechanism. J. Hazard. Mater. 2022, 426, 127821.

    Article  CAS  Google Scholar 

  2. Zhu, Z. H.; Liu, Y. B.; Song, C.; Hu, Y. T.; Feng, G. X.; Tang, B. Z. Porphyrin-based two-dimensional layered metal-organic framework with sono-/photocatalytic activity for water decontamination. ACS Nano 2022, 16, 1346–1357.

    Article  CAS  Google Scholar 

  3. Grčić, I.; Puma, G. L. Six-flux absorption-scattering models for photocatalysis under wide-spectrum irradiation sources in annular and flat reactors using catalysts with different optical properties. Appl. Catal. B Environ. 2017, 211, 222–234.

    Article  Google Scholar 

  4. Wong, K. T.; Kim, S. C.; Yun, K.; Choong, C. E.; Nah, I. W.; Jeon, B. H.; Yoon, Y.; Jang, M. Understanding the potential band position and e/h+ separation lifetime for Z-scheme and type-II heterojunction mechanisms for effective micropollutant mineralization: Comparative experimental and DFT studies. Appl. Catal. B Environ. 2020, 273, 119034.

    Article  CAS  Google Scholar 

  5. Martin, S. S.; Rivero, M. J.; Ortiz, I. Unravelling the mechanisms that drive the performance of photocatalytic hydrogen production. Catalysts 2020, 10, 901.

    Article  CAS  Google Scholar 

  6. Zhao, Z. W.; Sun, Y. J.; Dong, F. Graphitic carbon nitride based nanocomposites: A review. Nanoscale 2015, 7, 15–37.

    Article  CAS  Google Scholar 

  7. Cao, S. W.; Low, J. X.; Yu, J. G.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150–2176.

    Article  CAS  Google Scholar 

  8. Yang, L.; Bai, X.; Shi, J.; Du, X. Y.; Xu, L.; Jin, P. K. Quasi-full-visible-light absorption by D35-TiO2/g-C3N4 for synergistic persulfate activation towards efficient photodegradation of micropollutants. Appl. Catal. B Environ. 2019, 256, 117759.

    Article  CAS  Google Scholar 

  9. Kumar, A.; Raizada, P.; Singh, P.; Saini, R. V.; Saini, A. K.; Hosseini-Bandegharaei, A. Perspective and status of polymeric graphitic carbon nitride based Z-scheme photocatalytic systems for sustainable photocatalytic water purification. Chem. Eng. J. 2020, 391, 123496.

    Article  CAS  Google Scholar 

  10. Sudhaik, A.; Raizada, P.; Shandilya, P.; Jeong, D. Y.; Lim, J. H.; Singh, P. Review on fabrication of graphitic carbon nitride based efficient nanocomposites for photodegradation of aqueous phase organic pollutants. J. Ind. Eng. Chem. 2018, 67, 28–51.

    Article  CAS  Google Scholar 

  11. Patnaik, S.; Martha, S.; Madras, G.; Parida, K. The effect of sulfate pre-treatment to improve the deposition of Au-nanoparticles in a gold-modified sulfated g-C3N4 plasmonic photocatalyst towards visible light induced water reduction reaction. Phys. Chem. Chem. Phys. 2016, 18, 28502–28514.

    Article  CAS  Google Scholar 

  12. Liu, Y. F.; He, M. F.; Guo, R.; Fang, Z. R.; Kang, S. F.; Ma, Z.; Dong, M. D.; Wang, W. L.; Cui, L. F. Ultrastable metal-free near-infrared-driven photocatalysts for H2 production based on protonated 2D g-C3N4 sensitized with Chlorin e6. Appl. Catal. B Environ. 2020, 260, 118137.

    Article  CAS  Google Scholar 

  13. Wu, J. J.; Zhang, Y. F.; Zhou, J. S.; Wang, K. N.; Zheng, Y. Z.; Tao, X. Uniformly assembling n-type metal oxide nanostructures (TiO2 nanoparticles and SnO2 nanowires) onto P doped g-C3N4 nanosheets for efficient photocatalytic water splitting. Appl. Catal. B Environ. 2020, 278, 119301.

    Article  CAS  Google Scholar 

  14. Zhao, Z. R.; Zhang, W. Y.; Shen, X. L.; Muhmood, T.; Xia, M. Z.; Lei, W.; Wang, F. Y.; Khan, M. A. Preparation of g-C3N4/TiO2/BiVO4 composite and its application in photocatalytic degradation of pollutant from TATB production under visible light irradiation. J. Photochem. Photobio. A Chem. 2018, 358, 246–255.

    Article  CAS  Google Scholar 

  15. Raizada, P.; Thakur, P.; Sudhaik, A.; Singh, P.; Thakur, V. K.; Hosseini-Bandegharaei, A. Fabrication of dual Z-scheme photocatalyst via coupling of BiOBr/Ag/AgCl heterojunction with P and S co-doped g-C3N4 for efficient phenol degradation. Arab. J. Chem. 2020, 13, 4538–4552.

    Article  CAS  Google Scholar 

  16. Mirzaei, A.; Yerushalmi, L.; Chen, Z.; Haghighat, F. Photocatalytic degradation of sulfamethoxazole by hierarchical magnetic ZnO@g-C3N4: RSM optimization, kinetic study, reaction pathway and toxicity evaluation. J. Hazard. Mater. 2018, 359, 516–526.

    Article  CAS  Google Scholar 

  17. Wang, Q.; Zhang, L. X.; Guo, Y. K.; Shen, M.; Wang, M.; Li, B.; Shi, J. L. Multifunctional 2D porous g-C3N4 nanosheets hybridized with 3D hierarchical TiO2 microflowers for selective dye adsorption, antibiotic degradation and CO2 reduction. Chem. Eng. J. 2020, 396, 125347.

    Article  CAS  Google Scholar 

  18. Sun, J. Y.; Guo, Y. P.; Wang, Y.; Cao, D.; Tian, S. C.; Xiao, K.; Mao, R.; Zhao, X. H2O2 assisted photoelectrocatalytic degradation of diclofenac sodium at g-C3N4/BiVO4 photoanode under visible light irradiation. Chem. Eng. J. 2018, 332, 312–320.

    Article  CAS  Google Scholar 

  19. Hasija, V.; Sudhaik, A.; Raizada, P.; Hosseini-Bandegharaei, A.; Singh, P. Carbon quantum dots supported AgI/ZnO/phosphorus doped graphitic carbon nitride as Z-scheme photocatalyst for efficient photodegradation of 2,4-dinitrophenol. J. Environ. Chem. Eng. 2019, 7, 103272.

    Article  CAS  Google Scholar 

  20. Singh, P.; Shandilya, P.; Raizada, P.; Sudhaik, A.; Rahmani-Sani, A.; Hosseini-Bandegharaei, A. Review on various strategies for enhancing photocatalytic activity of graphene based nanocomposites for water purification. Arab. J. Chem. 2020, 13, 3498–3520.

    Article  CAS  Google Scholar 

  21. Raizada, P.; Kumari, J.; Shandilya, P.; Singh, P. Kinetics of photocatalytic mineralization of oxytetracycline and ampicillin using activated carbon supported ZnO/ZnWO4 nanocomposite in simulated wastewater. Desalin. Water Treat. 2017, 79, 204–213.

    Article  CAS  Google Scholar 

  22. Sonu; Dutta, V.; Sharma, S.; Raizada, P.; Hosseini-Bandegharaei, A.; Gupta, V. K.; Singh, P. Review on augmentation in photocatalytic activity of CoFe2O4 via heterojunction formation for photocatalysis of organic pollutants in water. J. Saudi Chem. Soc. 2019, 23, 1119–1136.

    Article  CAS  Google Scholar 

  23. Raizada, P.; Sudhaik, A.; Singh, P.; Shandilya, P.; Thakur, P.; Jung, H. Visible light assisted photodegradation of 2,4-dinitrophenol using Ag2CO3 loaded phosphorus and sulphur co-doped graphitic carbon nitride nanosheets in simulated wastewater. Arab. J. Chem. 2020, 13, 3196–3209.

    Article  CAS  Google Scholar 

  24. Sun, M.; Zeng, Q.; Zhao, X.; Shao, Y.; Ji, P. G.; Wang, C. Q.; Yan, T.; Du, B. Fabrication of novel g-C3N4 nanocrystals decorated Ag3PO4 hybrids: Enhanced charge separation and excellent visible-light driven photocatalytic activity. J. Hazard. Mater. 2017, 339, 9–21.

    Article  CAS  Google Scholar 

  25. Li, Y. F.; Fang, L.; Jin, R. X.; Yang, Y.; Fang, X.; Xing, Y.; Song, S. Y. Preparation and enhanced visible light photocatalytic activity of novel g-C3N4 nanosheets loaded with Ag2CO3 nanoparticles. Nanoscale 2015, 7, 758–764.

    Article  CAS  Google Scholar 

  26. Mishra, P.; Patnaik, S.; Parida, K. An overview of recent progress on noble metal modified magnetic Fe3O4 for photocatalytic pollutant degradation and H2 evolution. Catal. Sci. Technol. 2019, 9, 916–941.

    Article  CAS  Google Scholar 

  27. Mishra, P.; Behera, A.; Kandi, D.; Ratha, S.; Parida, K. Novel magnetic retrievable visible-light-driven ternary Fe3O4@NiFe2O4/phosphorus-doped g-C3N4 nanocomposite photocatalyst with significantly enhanced activity through a double-Z-scheme system. Inorg. Chem. 2020, 59, 4255–4272.

    Article  CAS  Google Scholar 

  28. Shao, Y. Y.; Ye, W. D.; Sun, C. Y.; Liu, C. L.; Wang, Q.; Chen, C. C.; Gu, J. Y.; Chen, X. Q. Enhanced photoreduction degradation of polybromodiphenyl ethers with Fe3O4-g-C3N4 under visible light irradiation. RSC Adv. 2018, 8, 10914–10921.

    Article  CAS  Google Scholar 

  29. Mansingh, S.; Acharya, R.; Martha, S.; Parida, K. M. Pyrochlore Ce2Zr2O7 decorated over rGO: A photocatalyst that proves to be efficient towards the reduction of 4-nitrophenol and degradation of ciprofloxacin under visible light. Phys. Chem. Chem. Phys. 2018, 20, 9872–9885.

    Article  CAS  Google Scholar 

  30. Liu, C. Y.; Li, X.; Li, J. Z.; Zhou, Y. J.; Sun, L. L.; Wang, H. Q.; Huo, P. W.; Ma, C. C.; Yan, Y. S. Fabricated 2D/2D CdIn2S4/N-rGO muti-heterostructure photocatalyst for enhanced photocatalytic activity. Carbon 2019, 152, 565–574.

    Article  CAS  Google Scholar 

  31. Wu, Y. Q.; Wang, P.; Zhu, X. L.; Zhang, Q. Q.; Wang, Z. Y.; Liu, Y. Y.; Zou, G. Z.; Dai, Y.; Whangbo, M. H.; Huang, B. B. Composite of CH3NH3PbI3 with reduced graphene oxide as a highly efficient and stable visible-light photocatalyst for hydrogen evolution in aqueous HI solution. Adv. Mater. 2018, 30, 1704342.

    Article  Google Scholar 

  32. Mansingh, S.; Padhi, D. K.; Parida, K. Bio-surfactant assisted solvothermal synthesis of magnetic retrievable Fe3O4@rGO nanocomposite for photocatalytic reduction of 2-nitrophenol and degradation of TCH under visible light illumination. Appl. Surf. Sci. 2019, 466, 679–690.

    Article  CAS  Google Scholar 

  33. Padhi, D. K.; Panigrahi, T. K.; Parida, K.; Singh, S. K.; Mishra, P. M. Green synthesis of Fe3O4/RGO nanocomposite with enhanced photocatalytic performance for Cr(VI) reduction, phenol degradation, and antibacterial activity. ACS Sustainable Chem. Eng. 2017, 5, 10551–10562.

    Article  CAS  Google Scholar 

  34. Yu, T.; Hu, Z. M.; Wang, H. M.; Tan, X. Enhanced visible-light-driven hydrogen evolution of ultrathin narrow-band-gap g-C3N4 nanosheets. J. Mater. Sci. 2020, 55, 2118–2128.

    Article  CAS  Google Scholar 

  35. Wang, P. F.; Zhan, S. H.; Xia, Y. G.; Ma, S. L.; Zhou, Q. X.; Li, Y. The fundamental role and mechanism of reduced graphene oxide in rGO/Pt-TiO2 nanocomposite for high-performance photocatalytic water splitting. Appl. Catal. B Environ. 2017, 207, 335–346.

    Article  CAS  Google Scholar 

  36. Song, P.; Liu, B.; Liang, C. B.; Ruan, K. P.; Qiu, H.; Ma, Z. L.; Guo, Y. Q.; Gu, J. W. Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding emi shielding performances and excellent thermal conductivities. Nano-Micro Lett. 2021, 13, 91.

    Article  CAS  Google Scholar 

  37. Yang, Y.; Zeng, Z. T.; Zeng, G. M.; Huang, D. L.; Xiao, R.; Zhang, C.; Zhou, C. Y.; Xiong, W. P.; Wang, W. J.; Cheng, M. et al. Ti3C2 MXene/porous g-C3N4 interfacial Schottky junction for boosting spatial charge separation in photocatalytic H2O2 production. Appl. Catal. B Environ. 2019, 258, 117956.

    Article  CAS  Google Scholar 

  38. Zhang, M. M.; Lai, C.; Li, B. S.; Huang, D. L.; Zeng, G. M.; Xu, P.; Qin, L.; Liu, S. Y.; Liu, X. G.; Yi, H. et al. Rational design 2D/2D BiOBr/CDs/g-C3N4 Z-scheme heterojunction photocatalyst with carbon dots as solid-state electron mediators for enhanced visible and NIR photocatalytic activity: Kinetics, intermediates, and mechanism insight. J. Catal. 2019, 369, 469–481.

    Article  CAS  Google Scholar 

  39. Ruan, K. P.; Gu, J. W. Ordered alignment of liquid crystalline graphene fluoride for significantly enhancing thermal conductivities of liquid crystalline polyimide composite films. Macromolecules 2022, 55, 4134–4145.

    Article  CAS  Google Scholar 

  40. Yang, H. Z.; Shang, L.; Zhang, Q. H.; Shi, R.; Waterhouse, G. I. N.; Gu, L.; Zhang, T. R. A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat. Commun. 2019, 10, 4585.

    Article  Google Scholar 

  41. Lee, D. E.; Devthade, V.; Moru, S.; Jo, W. K.; Tonda, S. Magnetically sensitive TiO2 hollow sphere/Fe3O4 core-shell hybrid catalyst for high-performance sunlight-assisted photocatalytic degradation of aqueous antibiotic pollutants. J. Alloys Compd. 2022, 902, 163612.

    Article  CAS  Google Scholar 

  42. Ma, T. Y.; Cao, J. L.; Jaroniec, M.; Qiao, S. Z. Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew. Chem., Int. Ed. 2016, 55, 1138–1142.

    Article  CAS  Google Scholar 

  43. Guo, F.; Shi, W. L.; Guan, W. S.; Huang, H.; Liu, Y. Carbon dots/g-C3N4/ZnO nanocomposite as efficient visible-light driven photocatalyst for tetracycline total degradation. Sep. Purif. Technol. 2017, 173, 295–303.

    Article  CAS  Google Scholar 

  44. Li, X.; Liu, S. S.; Cao, D.; Mao, R.; Zhao, X. Synergetic activation of H2O2 by photo-generated electrons and cathodic Fenton reaction for enhanced self-driven photoelectrocatalytic degradation of organic pollutants. Appl. Catal. B Environ. 2018, 235, 1–8.

    Article  CAS  Google Scholar 

  45. Zhu, L.; Kong, X. Q.; Yang, C. W.; Ren, B. X.; Tang, Q. Fabrication and characterization of the magnetic separation photocatalyst C−TiO2@Fe3O4/AC with enhanced photocatalytic performance under visible light irradiation. J. Hazard. Mater. 2020, 381, 120910.

    Article  CAS  Google Scholar 

  46. Guo, H.; Niu, H. Y.; Liang, C.; Niu, C. G.; Huang, D. W.; Zhang, L.; Tang, N.; Yang, Y.; Feng, C. Y.; Zeng, G. M. Insight into the energy band alignment of magnetically separable Ag2O/ZnFe2O4 p−n heterostructure with rapid charge transfer assisted visible light photocatalysis. J. Catal. 2019, 370, 289–303.

    Article  CAS  Google Scholar 

  47. Lin, X. H.; Wu, Y.; Xiang, J.; He, D.; Li, S. F. Y. Elucidation of mesopore-organic molecules interactions in mesoporous TiO2 photocatalysts to improve photocatalytic activity. Appl. Catal. B Environ. 2016, 199, 64–74.

    Article  CAS  Google Scholar 

  48. Jiang, W. S.; Zong, X. P.; An, L.; Hua, S. X.; Miao, X.; Luan, S. L.; Wen, Y. J.; Tao, F. F.; Sun, Z. C. Consciously constructing heterojunction or direct Z-scheme photocatalysts by regulating electron flow direction. ACS Catal. 2018, 8, 2209–2217.

    Article  CAS  Google Scholar 

  49. Zhu, T. T.; Song, Y. H.; Ji, H. Y.; Xu, Y. G.; Song, Y. X.; Xia, J. X.; Yin, S.; Li, Y. P.; Xu, H.; Zhang, Q. et al. Synthesis of g-C3N4/Ag3VO4 composites with enhanced photocatalytic activity under visible light irradiation. Chem. Eng. J. 2015, 271, 96–105.

    Article  CAS  Google Scholar 

  50. Tang, M. L.; Ao, Y. H.; Wang, C.; Wang, P. F. Rationally constructing of a novel dual Z-scheme composite photocatalyst with significantly enhanced performance for neonicotinoid degradation under visible light irradiation. Appl. Catal. B Environ. 2020, 270, 118918.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21667019 and 22066017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juhua Luo or Yu Xie.

Electronic Supplementary Material

12274_2022_5110_MOESM1_ESM.pdf

Graphitic carbon nitride/ferroferric oxide/reduced graphene oxide nanocomposite as highly active visible light photocatalyst

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Dai, Z., Feng, M. et al. Graphitic carbon nitride/ferroferric oxide/reduced graphene oxide nanocomposite as highly active visible light photocatalyst. Nano Res. 16, 371–376 (2023). https://doi.org/10.1007/s12274-022-5110-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5110-z

Keywords

Navigation