Skip to main content
Log in

Much enhanced electromagnetic wave absorbing properties from the synergistic effect of graphene/γ-graphyne heterostructure in both gigahertz and terahertz band ranges

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Exploring advanced electromagnetic wave (EMW) absorbers is one of the most feasible ways to solve the increasing electromagnetic pollution in both military and civil fields. In this work, γ-graphyne (γ-GY) is synthesized by a mechanochemical route using CaC2 and hexabromobenzene (PhBr6). Then three-dimensional (3D) reduced graphene oxide/γ-GY (RGO/GY) heterostructures are prepared through facile solvothermal self-assembly and subsequent thermal reduction. The influences of calcination temperature and the content of γ-GY of the composite on EMW absorption performance are fully investigated. The minimum reflection loss (RL) value of the RGO/GY composite foam is −71.73 dB at 10.48 GHz with the matching thickness of 3.54 mm, and the effective absorption bandwidth (EAB) less than −10 dB is 7.36 GHz. Moreover, excellent terahertz (THz) absorption property is also obtained at 0.2–1.6 THz. The RL of 84.08 dB is acquired, and the EAB covers 100% of the entire measured bandwidth. In addition, the composite is also a promising anticorrosive EMW absorber. This work provides encouraging findings, which are also instructive for the potential advantages of graphyne-based materials as highly efficient EMW absorbers in both gigahertz and terahertz band ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gu, W. H.; Lv, J.; Quan, B.; Liang, X. H.; Zhang, B. S.; Ji, G. B. Achieving MOF-derived one-dimensional porous ZnO/C nanofiber with lightweight and enhanced microwave response by an electrospinning method. J. Alloys Compd. 2019, 806, 983–991.

    Article  CAS  Google Scholar 

  2. Liang, L. Y.; Yang, R. S.; Han, G. J.; Feng, Y. Z.; Zhao, B.; Zhang, R.; Wang, Y. M.; Liu, C. T. Enhanced electromagnetic wave-absorbing performance of magnetic nanoparticles-anchored 2D Ti3C2Tx MXene. ACS Appl. Mater. Interfaces 2020, 12, 2644–2654.

    Article  CAS  Google Scholar 

  3. Yang, N.; Luo, Z. X.; Zhu, G. R.; Chen, S. C.; Wang, X. L.; Wu, G.; Wang, Y. Z. Ultralight three-dimensional hierarchical cobalt nanocrystals/N-doped CNTs/carbon sponge composites with a hollow skeleton toward superior microwave absorption. ACS Appl. Mater. Interfaces 2019, 11, 35987–35998.

    Article  CAS  Google Scholar 

  4. Qiu, Y.; Lin, Y.; Yang, H. B.; Wang, L.; Wang, M. Q.; Wen, B. Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption. Chem. Eng. J. 2020, 383, 123207.

    Article  CAS  Google Scholar 

  5. Li, J.; Miao, P.; Chen, K. J.; Cao, J. W.; Liang, J.; Tang, Y. S.; Kong, J. Highly effective electromagnetic wave absorbing prismatic Co/C nanocomposites derived from cubic metal-organic framework. Compos. Part B Eng. 2020, 182, 107613.

    Article  CAS  Google Scholar 

  6. Wang, S. J.; Li, D. S.; Zhou, Y.; Jiang, L. Hierarchical Ti3C2Tx MXene/Ni chain/ZnO array hybrid nanostructures on cotton fabric for durable self-cleaning and enhanced microwave absorption. ACS Nano 2020, 14, 8634–8645.

    Article  CAS  Google Scholar 

  7. Deng, B. W.; Xiang, Z.; Xiong, J.; Liu, Z. C.; Yu, L. Z.; Lu, W. Sandwich-like Fe&TiO2@C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption. NanoMicroLett. 2020, 12, 55.

    CAS  Google Scholar 

  8. Chen, Q. L.; Li, L. Y.; Wang, Z. L.; Ge, Y. C.; Zhou, C. S.; Yi, J. H. Synthesis and enhanced microwave absorption performance of CIP@SiO2@Mn0.6Zn0.4Fe2O4 ferrite composites. J. Alloys Compd. 2019, 779, 720–727.

    Article  CAS  Google Scholar 

  9. Liu, P. J.; Yao, Z. J.; Zhou, J. T.; Yang, Z. H.; Kong, L. B. Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C 2016, 4, 9738–9749.

    Article  CAS  Google Scholar 

  10. Li, Z. J.; Hou, Z. L.; Song, W. L.; Liu, X. D.; Cao, W. Q.; Shao, X. H.; Cao, M. S. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption. Nanoscale 2016, 8, 10415–10424.

    Article  CAS  Google Scholar 

  11. Jeon, S.; Kim, J.; Kim, K. H. Microwave absorption properties of graphene oxide capsulated carbonyl iron particles. Appl. Surf. Sci. 2019, 475, 1065–1069.

    Article  CAS  Google Scholar 

  12. Zuo, Y. X.; Su, X. R.; Li, X. W.; Yao, Z. J.; Yu, T. T.; Zhou, J. T.; Li, J.; Lu, J.; Ding, J. Multimaterial 3D-printing of graphene/Li0.35Zn0.3Fe2.35O4 and graphene/carbonyl iron composites with superior microwave absorption properties and adjustable bandwidth. Carbon 2020, 167, 62–74.

    Article  CAS  Google Scholar 

  13. Jiang, Y.; Chen, Y.; Liu, Y. J.; Sui, G. X. Lightweight spongy bone-like graphene@SiC aerogel composites for high-performance microwave absorption. Chem. Eng. J. 2018, 337, 522–531.

    Article  CAS  Google Scholar 

  14. Shao, G.; Liang, J. F.; Zhao, W. Y.; Zhao, B.; Liu, W.; Wang, H. L.; Fan, B. B.; Xu, H. L.; Lu, H. X.; Wang, Y. G. et al. Co decorated polymer-derived SiCN ceramic aerogel composites with ultrabroad microwave absorption performance. J. Alloys Compd. 2020, 813, 152007.

    Article  CAS  Google Scholar 

  15. Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

    Article  CAS  Google Scholar 

  16. Wang, Z. C.; Wei, R. B.; Gu, J. W.; Liu, H.; Liu, C. T.; Luo, C. J.; Kong, J.; Shao, Q.; Wang, N.; Guo, Z. et al. Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption. Carbon 2018, 139, 1126–1135.

    Article  CAS  Google Scholar 

  17. Zhang, K. L.; Zhang, J. Y.; Hou, Z. L.; Bi, S.; Zhao, Q. L. Multifunctional broadband microwave absorption of flexible graphene composites. Carbon 2019, 141, 608–617.

    Article  CAS  Google Scholar 

  18. Wang, H. G.; Meng, F. B.; Huang, F.; Jing, C. F.; Li, Y.; Wei, W.; Zhou, Z. W. Interface modulating CNTs@PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption. ACS Appl. Mater. Interfaces 2019, 11, 12142–12153.

    Article  CAS  Google Scholar 

  19. Sun, H.; Che, R. C.; You, X.; Jiang, Y. S.; Yang, Z. B.; Deng, J.; Qiu, L. B.; Peng, H. S. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 2014, 26, 8120–8125.

    Article  CAS  Google Scholar 

  20. Li, W. X.; Qi, H. X.; Guo, F.; Du, Y. E.; Song, N. J.; Liu, Y. Y.; Chen, Y. Q. Co nanoparticles supported on cotton-based carbon fibers: A novel broadband microwave absorbent. J. Alloys Compd. 2019, 772, 760–769.

    Article  CAS  Google Scholar 

  21. Liu, L. Y.; Yang, S.; Hu, H. Y.; Zhang, T. L.; Yuan, Y.; Li, Y. B.; He, X. D. Lightweight and efficient microwave-absorbing materials based on loofah-sponge-derived hierarchically porous carbons. ACS Sustainable Chem. Eng. 2019, 7, 1228–1238.

    Article  CAS  Google Scholar 

  22. Baughman, R. H.; Eckhardt, H.; Kertesz, M. Structure property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms. J. Chem. Phys. 1987, 87, 6687–6699.

    Article  CAS  Google Scholar 

  23. Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B.; Li, Y. J.; Zhu, D. B. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46, 3256–3258.

    Article  CAS  Google Scholar 

  24. Gao, X.; Liu, H. B.; Wang, D.; Zhang, J. Graphdiyne: Synthesis, properties, and applications. Chem. Soc. Rev. 2019, 48, 908–936.

    Article  CAS  Google Scholar 

  25. Li, Y. J.; Liu, Q. N.; Li, W. F.; Meng, H.; Lu, Y. Z.; Li, C. X. Synthesis and supercapacitor application of alkynyl carbon materials derived from CaC2 and polyhalogenated hydrocarbons by interfacial mechanochemical reactions. ACS Appl. Mater. Interfaces 2017, 9, 3895–3901.

    Article  CAS  Google Scholar 

  26. Li, Q. D.; Yang, C. F.; Wu, L. L.; Wang, H.; Cui, X. L. Converting benzene into γ-graphyne and its enhanced electrochemical oxygen evolution performance. J. Mater. Chem. A 2019, 7, 5981–5990.

    Article  CAS  Google Scholar 

  27. Yang, C. F.; Li, Y.; Chen, Y.; Li, Q. D.; Wu, L. L.; Cui, X. L. Mechanochemical synthesis of γ-graphyne with enhanced lithium storage performance. Small 2019, 15, 1804710.

    Article  Google Scholar 

  28. Ding, W.; Sun, M. X.; Gao, B. W.; Liu, W. Z.; Ding, Z. P.; Anandan, S. A ball-milling synthesis of N-graphyne with controllable nitrogen doping sites for efficient electrocatalytic oxygen evolution and supercapacitors. Dalton Trans. 2020, 49, 10958–10969.

    Article  CAS  Google Scholar 

  29. Zhang, S. C.; Yin, C.; Kang, Z.; Wu, P. W.; Wu, J.; Zhang, Z.; Liao, Q. L.; Zhang, J.; Zhang, Y. Graphdiyne nanowall for enhanced photoelectrochemical performance of Si heterojunction photoanode. ACS Appl. Mater. Interfaces 2019, 11, 2745–2749.

    Article  CAS  Google Scholar 

  30. Wang, Y. Q.; Wang, H. G.; Ye, J. H.; Shi, L. Y.; Feng, X. Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption. Chem. Eng. J. 2020, 383, 123096.

    Article  CAS  Google Scholar 

  31. Liao, Q.; He, M.; Zhou, Y. M.; Nie, S. X.; Wang, Y. J.; Hu, S. C.; Yang, H. Y.; Li, H. F.; Tong, Y. Highly cuboid-shaped heterobimetallic metal-organic frameworks derived from porous Co/ZnO/C microrods with improved electromagnetic wave absorption capabilities. ACS Appl. Mater. Interfaces 2018, 10, 29136–29144.

    Article  CAS  Google Scholar 

  32. Zuo, Z. C.; Shang, H.; Chen, Y. H.; Li, J. F.; Liu, H. B.; Li, Y. J.; Li, Y. L. A facile approach for graphdiyne preparation under atmosphere for an advanced battery anode. Chem. Commun. 2017, 53, 8074–8077.

    Article  CAS  Google Scholar 

  33. Wu, N. N.; Liu, C.; Xu, D. M.; Liu, J. R.; Liu, W.; Shao, Q.; Guo, Z. H. Enhanced electromagnetic wave absorption of three-dimensional porous Fe3O4/C composite flowers. ACS Sustainable Chem. Eng. 2018, 6, 12471–12480.

    Article  CAS  Google Scholar 

  34. Li, Y.; Liu, X. F.; Nie, X. Y.; Yang, W. W.; Wang, Y. D.; Yu, R. H.; Shui, J. L. Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 2019, 29, 1807624.

    Article  Google Scholar 

  35. Zeng, M.; Cao, Q.; Liu, J.; Guo, B. Y.; Hao, X. Z.; Liu, Q. W.; Liu, X. F.; Sun, X.; Zhang, X. X.; Yu, R. H. Hierarchical cobalt selenides as highly efficient microwave absorbers with tunable frequency response. ACS Appl. Mater. Interfaces 2020, 12, 1222–1231.

    Article  CAS  Google Scholar 

  36. Che, R. C.; Peng, L. M.; Duan, X. F.; Chen, Q.; Liang, X. L. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 2004, 16, 401–405.

    Article  CAS  Google Scholar 

  37. Zhou, C. L.; Wang, X. X.; Luo, H.; Deng, L. W.; Wang, S.; Wei, S.; Zheng, Y. W.; Jia, Q.; Liu, J. Q. Interfacial design of sandwich-like CoFe@Ti3C2Tx composites as high efficient microwave absorption materials. Appl. Surf. Sci. 2019, 494, 540–550.

    Article  CAS  Google Scholar 

  38. Zhou, C. L.; Wang, X. X.; Luo, H.; Deng, L. W.; Wei, S.; Zheng, Y. W.; Jia, Q.; Liu, J. Q. Rapid and direct growth of bipyramid TiO2 from Ti3C2Tx MXene to prepare Ni/TiO2/C heterogeneous composites for high-performance microwave absorption. Chem. Eng. J. 2020, 383, 123095.

    Article  CAS  Google Scholar 

  39. Wang, F. Y.; Sun, Y. Q.; Li, D. R.; Zhong, B.; Wu, Z. G.; Zuo, S. Y.; Yan, D.; Zhuo, R. F.; Feng, J. J.; Yan, P. X. Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning. Carbon 2018, 134, 264–273.

    Article  CAS  Google Scholar 

  40. Wu, Y.; Shu, R. W.; Zhang, J. B.; Wan, Z. L.; Shi, J. J.; Liu, Y.; Zhao, G. M.; Zheng, M. D. Oxygen vacancies regulated microwave absorption properties of reduced graphene oxide/multi-walled carbon nanotubes/cerium oxide ternary nanocomposite. J. Alloys Compd. 2020, 819, 152944.

    Article  CAS  Google Scholar 

  41. Shu, R. W.; Wan, Z. L.; Zhang, J. B.; Wu, Y.; Liu, Y.; Shi, J. J.; Zheng, M. D. Facile design of three-dimensional nitrogen-doped reduced graphene oxide/multi-walled carbon nanotube composite foams as lightweight and highly efficient microwave absorbers. ACS Appl. Mater. Interfaces 2020, 12, 4689–4698.

    Article  CAS  Google Scholar 

  42. Liu, Y.; Jia, Z. R.; Zhan, Q. Q.; Dong, Y. H.; Xu, Q. M.; Wu, G. L. Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption. Nano Res. 2022, 15, 5590–5600.

    Article  CAS  Google Scholar 

  43. Wang, G. Z.; Gao, Z.; Tang, S. W.; Chen, C. Q.; Duan, F. F.; Zhao, S. C.; Lin, S. W.; Feng, Y. H.; Zhou, L.; Qin, Y. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 2012, 6, 11009–11017.

    Article  CAS  Google Scholar 

  44. Tang, M.; Zhang, J. Y.; Bi, S.; Hou, Z. L.; Shao, X. H.; Zhan, K. T.; Cao, M. S. Ultrathin topological insulator absorber: Unique dielectric behavior of Bi2Te3 nanosheets based on conducting surface states. ACS Appl. Mater. Interfaces 2019, 11, 33285–33291.

    Article  CAS  Google Scholar 

  45. Li, Z. N.; Han, X. J.; Ma, Y.; Liu, D. W.; Wang, Y. H.; Xu, P.; Li, C. L.; Du, Y. C. MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance. ACS Sustainable Chem. Eng. 2018, 6, 8904–8913.

    Article  CAS  Google Scholar 

  46. Wang, R. L.; He, M.; Zhou, Y. M.; Nie, S. X.; Wang, Y. J.; Liu, W. Q.; He, Q.; Wu, W. T.; Bu, X. H.; Yang, X. M. Metal-organic frameworks self-templated cubic hollow Co/N/C@MnO2 composites for electromagnetic wave absorption. Carbon 2020, 156, 378–388.

    Article  CAS  Google Scholar 

  47. Xu, Z. J.; He, M.; Zhou, Y. M.; Nie, S. X.; Wang, Y. J.; Huo, Y.; Kang, Y. F.; Wang, R. L.; Xu, R.; Peng, H. et al. Spider web-like carbonized bacterial cellulose/MoSe2 nanocomposite with enhanced microwave attenuation performance and tunable absorption bands. Nano Res. 2021, 14, 738–746.

    Article  CAS  Google Scholar 

  48. Ur Rehman, S.; Wang, J. M.; Luo, Q. H.; Sun, M. Z.; Jiang, L.; Han, Q.; Liu, J. C.; Bi, H. Starfish-like C/CoNiO2 heterostructure derived from ZIF-67 with tunable microwave absorption properties. Chem. Eng. J. 2019, 373, 122–130.

    Article  CAS  Google Scholar 

  49. Wang, S. Y.; Ke, X.; Zhong, S. T.; Lai, Y. R.; Qian, D. L.; Wang, Y. P.; Wang, Q. H.; Jiang, W. Bimetallic zeolitic imidazolate frameworks-derived porous carbon-based materials with efficient synergistic microwave absorption properties: The role of calcining temperature. RSC Adv. 2017, 7, 46436–46444.

    Article  CAS  Google Scholar 

  50. Jiang, Y.; Xie, X.; Chen, Y.; Liu, Y. J.; Yang, R.; Sui, G. X. Hierarchically structured cellulose aerogels with interconnected MXene networks and their enhanced microwave absorption properties. J. Mater. Chem. C 2018, 6, 8679–8687.

    Article  CAS  Google Scholar 

  51. Zhang, X.; Wang, H. H.; Hu, R.; Huang, C. Y.; Zhong, W. J.; Pan, L. M.; Feng, Y. B.; Qiu, T.; Zhang, C. F.; Yang, J. Novel solvothermal preparation and enhanced microwave absorption properties of Ti3C2Tx MXene modified by in situ coated Fe3O4 nanoparticles. Appl. Surf. Sci. 2019, 484, 383–391.

    Article  CAS  Google Scholar 

  52. Bai, T. T.; Guo, Y.; Liu, H.; Song, G.; Zhang, D. B.; Wang, Y. M.; Mi, L. W.; Guo, Z. H.; Liu, C. T.; Shen, C. Y. Achieving enhanced electromagnetic shielding and absorption capacity of cellulose-derived carbon aerogels via tuning the carbonization temperature. J. Mater. Chem. C 2020, 8, 5191–5201.

    Article  CAS  Google Scholar 

  53. Qiu, X.; Wang, L. X.; Zhu, H. L.; Guan, Y. K.; Zhang, Q. T. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Nanoscale 2017, 9, 7408–7418.

    Article  CAS  Google Scholar 

  54. Huang, X. G.; Qiao, M.; Lu, X. C.; Li, Y. F.; Ma, Y. B.; Kang, B.; Quan, B.; Ji, G. B. Evolution of dielectric loss-dominated electromagnetic patterns in magnetic absorbers for enhanced microwave absorption performances. Nano Res. 2021, 14, 4006–4013.

    Article  CAS  Google Scholar 

  55. Li, C.; Li, Z. H.; Qi, X. S.; Gong, X.; Chen, Y. L.; Peng, Q.; Deng, C. Y.; Jing, T.; Zhong, W. A generalizable strategy for constructing ultralight three-dimensional hierarchical network heterostructure as high-efficient microwave absorber. J. Colloid Interface Sci. 2022, 605, 13–22.

    Article  CAS  Google Scholar 

  56. Zhang, J. J.; Li, Z. H.; Qi, X. S.; Gong, X.; Xie, R.; Deng, C. Y.; Zhong, W.; Du, Y. W. Constructing flower-like core@shell MoSe2-based nanocomposites as a novel and high-efficient microwave absorber. Compos. Part B Eng. 2021, 222, 109067.

    Article  CAS  Google Scholar 

  57. Li, C.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Magnetic-dielectric synergy and interfacial engineering to design yolk-shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption. Nano Res. 2022, 15, 6761–6771.

    Article  CAS  Google Scholar 

  58. Wu, Z. C.; Cheng, H. W.; Jin, C.; Yang, B. T.; Xu, C. Y.; Pei, K.; Zhang, H. B.; Yang, Z. Q.; Che, R. C. Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 2022, 34, 2107538.

    Article  CAS  Google Scholar 

  59. Xue, W.; Yang, G.; Bi, S.; Zhang, J. Y.; Hou, Z. L. Construction of caterpillar-like hierarchically structured Co/MnO/CNTs derived from MnO2/ZIF-8@ZIF-67 for electromagnetic wave absorption. Carbon 2021, 173, 521–527.

    Article  CAS  Google Scholar 

  60. Liu, P. B.; Zhang, Y. Q.; Yan, J.; Huang, Y.; Xia, L.; Guang, Z. X. Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 2019, 368, 285–298.

    Article  CAS  Google Scholar 

  61. Wang, N. N.; Wu, F.; Xie, A. M.; Dai, X. Q.; Sun, M. X.; Qiu, Y. Y.; Wang, Y.; Lv, X.; Wang, M. L. One-pot synthesis of biomass-derived carbonaceous spheres for excellent microwave absorption at the Ku band. RSC Adv. 2015, 5, 40531–40535.

    Article  CAS  Google Scholar 

  62. Guo, L.; An, Q. D.; Xiao, Z. Y.; Zhai, S. R.; Cui, L.; Li, Z. C. Performance enhanced electromagnetic wave absorber from controllable modification of natural plant fiber. RSC Adv. 2019, 9, 16690–16700.

    Article  CAS  Google Scholar 

  63. Ren, A. F.; Zahid, A.; Fan, D.; Yang, X. D.; Imran, M. A.; Alomainy, A.; Abbasi, Q. H. State-of-the-art in terahertz sensing for food and water security-A comprehensive review. Trends Food Sci. Technol. 2019, 85, 241–251.

    Article  CAS  Google Scholar 

  64. Seo, M.; Park, H. R. THz biochemical sensors: Terahertz biochemical molecule-specific sensors (Advanced Optical Materials 3/2020). Adv. Opt. Mater. 2020, 8, 2070010.

    Article  Google Scholar 

  65. Yang, X. X.; Vorobiev, A.; Generalov, A.; Andersson, M. A.; Stake, J. A flexible graphene terahertz detector. Appl. Phys. Lett. 2017, 111, 021102.

    Article  Google Scholar 

  66. Zhang, Z. Y.; Zhong, C. Z.; Fan, F.; Liu, G. H.; Chang, S. J. Terahertz polarization and chirality sensing for amino acid solution based on chiral metasurface sensor. Sens. Actuators B Chem. 2021, 330, 129315.

    Article  CAS  Google Scholar 

  67. Jung, G. B.; Myung, Y.; Cho, Y. J.; Sohn, Y. J.; Jang, D. M.; Kim, H. S.; Lee, C. W.; Park, J.; Maeng, I.; Son, J. H. et al. Terahertz spectroscopy of nanocrystal-carbon nanotube and -graphene oxide hybrid nanostructures. J. Phys. Chem. C 2010, 114, 11258–11265.

    Article  CAS  Google Scholar 

  68. Yuan, T. Y.; Xiong, S. J.; Shen, X. H. Coordination of actinide single ions to deformed graphdiyne: Strategy on essential separation processes in nuclear fuel cycle. Angew. Chem., Int. Ed. 2020, 59, 17719–17725.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the National Key R&D Program of China (No. 2020YFA0711500), the National Natural Science Foundation of China (Nos. 21875114, 51373078, and 51422304), and the 111 project (No. B18030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Huang.

Electronic Supplementary Material

12274_2022_5093_MOESM1_ESM.pdf

Much enhanced electromagnetic wave absorbing properties from the synergistic effect of graphene/γ-graphyne heterostructure in both gigahertz and terahertz band ranges

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Li, Z., Xia, L. et al. Much enhanced electromagnetic wave absorbing properties from the synergistic effect of graphene/γ-graphyne heterostructure in both gigahertz and terahertz band ranges. Nano Res. 16, 88–100 (2023). https://doi.org/10.1007/s12274-022-5093-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5093-9

Keywords

Navigation