Skip to main content
Log in

Graphene and MXene-based porous structures for multifunctional electromagnetic interference shielding

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrically conductive porous structures are ideal candidates for lightweight and absorption-dominant electromagnetic interference (EMI) shielding. In this review, we summarize the recent progress in developing porous composites and structures from emerging two-dimensional (2D) graphene and MXene nanosheets for EMI shielding applications. Important properties contributing to various energy loss mechanisms are probed with a critical discussion on their correlations with EMI shielding performance. Technological approaches to constructing bulk porous structures, such as 2D porous films, three-dimensional (3D) aerogels and foams, and hydrogels, are compared to highlight important material and processing parameters required to achieve optimal microstructures. A comprehensive comparison of EMI shielding performance is also carried out to elucidate the effects of different assembly techniques and microstructures. Distinctive multifunctional applications in adaptive EMI shielding, mechanical force attenuation, thermal management, and wearable devices are introduced, underlining the importance of unique compositions and microstructures of porous composites. The process-structure-property relationships established in this review would offer valuable guidance and insights into the design of lightweight EMI shielding materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, Z. P.; Xu, C.; Ma, C. Q.; Ren, W. C.; Cheng, H. M. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 2013, 25, 1296–1300.

    Article  CAS  Google Scholar 

  2. Yousefi, N.; Sun, X. Y.; Lin, X. Y.; Shen, X.; Jia, J. J.; Zhang, B.; Tang, B. Z.; Chan, M.; Kim, J. K. Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 2014, 26, 5480–5487.

    Article  CAS  Google Scholar 

  3. Chung, D. D. L. Electromagnetic interference shielding effectiveness of carbon materials. Carbon 2001, 39, 279–285.

    Article  CAS  Google Scholar 

  4. Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Man Hong, S.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140.

    Article  CAS  Google Scholar 

  5. Chen, Y. M.; Yang, Y.; Xiong, Y.; Zhang, L.; Xu, W. H.; Duan, G. G.; Mei, C. T.; Jiang, S. H.; Rui, Z. H.; Zhang, K. Porous aerogel and sponge composites: Assisted by novel nanomaterials for electromagnetic interference shielding. Nano Today 2021, 38, 101204.

    Article  CAS  Google Scholar 

  6. Zheng, Q. B.; Li, Z. G.; Yang, J. H.; Kim, J. K. Graphene oxide-based transparent conductive films. Prog. Mater. Sci. 2014, 64, 200–247.

    Article  CAS  Google Scholar 

  7. Zheng, Q. B.; Lee, J. H.; Shen, X.; Chen, X. D.; Kim, J. K. Graphene-based wearable piezoresistive physical sensors. Mater. Today 2020, 36, 158–179.

    Article  Google Scholar 

  8. Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

    Article  CAS  Google Scholar 

  9. Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

    Article  CAS  Google Scholar 

  10. Kim, J. E.; Oh, J. H.; Kotal, M.; Koratkar, N.; Oh, I. K. Self-assembly and morphological control of three-dimensional macroporous architectures built of two-dimensional materials. Nano Today 2017, 14, 100–123.

    Article  CAS  Google Scholar 

  11. Dillon, A. D.; Ghidiu, M. J.; Krick, A. L.; Griggs, J.; May, S. J.; Gogotsi, Y.; Barsoum, M. W.; Fafarman, A. T. Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv. Funct. Mater. 2016, 26, 4162–4168.

    Article  CAS  Google Scholar 

  12. Lipatov, A.; Alhabeb, M.; Lukatskaya, M. R.; Boson, A.; Gogotsi, Y.; Sinitskii, A. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2016, 2, 1600255.

    Article  Google Scholar 

  13. Zhang, C. J.; Anasori, B.; Seral-Ascaso, A.; Park, S. H.; McEvoy, N.; Shmeliov, A.; Duesberg, G. S.; Coleman, J. N.; Gogotsi, Y.; Nicolosi, V. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 2017, 29, 1702678.

    Article  Google Scholar 

  14. Zhang, L.; Alvarez, N. T.; Zhang, M. X.; Haase, M.; Malik, R.; Mast, D.; Shanov, V. Preparation and characterization of graphene paper for electromagnetic interference shielding. Carbon 2015, 82, 353–359.

    Article  CAS  Google Scholar 

  15. Shen, B.; Zhai, W. T.; Zheng, W. G. Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater. 2014, 24, 4542–4548.

    Article  CAS  Google Scholar 

  16. Liu, J.; Zhang, H. B.; Sun, R. H.; Liu, Y. F.; Liu, Z. S.; Zhou, A. G.; Yu, Z. Z. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 2017, 29, 1702367.

    Article  Google Scholar 

  17. Hsiao, S. T.; Ma, C. C. M.; Liao, W. H.; Wang, Y. S.; Li, S. M.; Huang, Y. C.; Yang, R. B.; Liang, W. F. Lightweight and flexible reduced graphene oxide/water-borne polyurethane composites with high electrical conductivity and excellent electromagnetic interference shielding performance. ACS Appl. Mater. Interfaces 2014, 6, 10667–10678.

    Article  CAS  Google Scholar 

  18. Hong, S. K.; Kim, K. Y.; Kim, T. Y.; Kim, J. H.; Park, S. W.; Kim, J. H.; Cho, B. J. Electromagnetic interference shielding effectiveness of monolayer graphene. Nanotechnology 2012, 23, 455704.

    Article  Google Scholar 

  19. He, Q. M.; Tao, J. R.; Yang, Y.; Yang, D.; Zhang, K.; Fei, B.; Wang, M. Electric-magnetic-dielectric synergism and salisbury screen effect in laminated polymer composites with multiwall carbon nanotube, nickel, and antimony trioxide for enhancing electromagnetic interference shielding. Compos. Part A: Appl. Sci. Manuf. 2022, 156, 106901.

    Article  CAS  Google Scholar 

  20. Yang, Y.; Tao, J. R.; Yang, D.; He, Q. M.; Chen, X. D.; Wang, M. Improving dispersion and delamination of graphite in biodegradable starch materials via constructing cation-π interaction: Towards microwave shielding enhancement. J. Mater. Sci. Technol. 2022, 129, 196–205.

    Article  Google Scholar 

  21. Cai, J. H.; Tang, X. H.; Chen, X. D.; Wang, M. Temperature and strain-induced tunable electromagnetic interference shielding in polydimethylsiloxane/multi-walled carbon nanotube composites with temperature-sensitive microspheres. Compos. Part A: Appl. Sci. Manuf. 2021, 140, 106188.

    Article  CAS  Google Scholar 

  22. Gao, Y. N.; Wang, Y.; Yue, T. N.; Zhao, B.; Che, R. C.; Wang, M. Superstructure silver micro-tube composites for ultrahigh electromagnetic wave shielding. Chem. Eng. J. 2022, 430, 132949.

    Article  CAS  Google Scholar 

  23. Shen, X.; Zheng, Q. B.; Kim, J. K. Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications. Prog. Mater. Sci. 2021, 115, 100708.

    Article  CAS  Google Scholar 

  24. Zhao, B.; Hamidinejad, M.; Wang, S.; Bai, P. W.; Che, R. C.; Zhang, R.; Park, C. B. Advances in electromagnetic shielding properties of composite foams. J. Mater. Chem. A 2021, 9, 8896–8949.

    Article  CAS  Google Scholar 

  25. Han, M. K.; Shuck, C. E.; Rakhmanov, R.; Parchment, D.; Anasori, B.; Koo, C. M.; Friedman, G.; Gogotsi, Y. Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 2020, 14, 5008–5016.

    Article  CAS  Google Scholar 

  26. Tan, X.; Yuan, Q. L.; Qiu, M. T.; Yu, J. H.; Jiang, N.; Lin, C. T.; Dai, W. Rational design of graphene/polymer composites with excellent electromagnetic interference shielding effectiveness and high thermal conductivity: A mini review. J. Mater. Sci. Technol. 2022, 117, 238–250.

    Article  Google Scholar 

  27. Iqbal, A.; Sambyal, P.; Koo, C. M. 2D MXenes for electromagnetic shielding: A review. Adv. Funct. Mater. 2020, 30, 2000883.

    Article  CAS  Google Scholar 

  28. Wang, L.; Ma, Z. L.; Zhang, Y. L.; Chen, L. X.; Cao, D. P.; Gu, J. W. Polymer-based EMI shielding composites with 3D conductive networks: A mini-review. SusMat 2021, 1, 413–431.

    Article  Google Scholar 

  29. Wang, M.; Tang, X. H.; Cai, J. H.; Wu, H.; Shen, J. B.; Guo, S. Y. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review. Carbon 2021, 177, 377–402.

    Article  CAS  Google Scholar 

  30. Qin, M.; Zhang, L. M.; Wu, H. J. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 2022, 9, 2105553.

    Article  CAS  Google Scholar 

  31. Wang, X. X.; Cao, W. Q.; Cao, M. S.; Yuan, J. Assembling nano-microarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 2020, 32, 2002112.

    Article  CAS  Google Scholar 

  32. Song, Q.; Ye, F.; Kong, L.; Shen, Q. L.; Han, L. Y.; Feng, L.; Yu, G. J.; Pan, Y. A.; Li, H. J. Graphene and MXene nanomaterials: Toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 2020, 30, 2000475.

    Article  CAS  Google Scholar 

  33. Shu, J. C.; Cao, W. Q.; Cao, M. S. Diverse metal-organic framework architectures for electromagnetic absorbers and shielding. Adv. Funct. Mater. 2021, 31, 2100470.

    Article  CAS  Google Scholar 

  34. Zhang, Y.; Xu, M. K.; Wang, Z. G.; Zhao, T. Y.; Liu, L. X.; Zhang, H. B.; Yu, Z. Z. Strong and conductive reduced graphene oxide-MXene porous films for efficient electromagnetic interference shielding. Nano Res. 2022, 15, 4916–4924.

    Article  CAS  Google Scholar 

  35. Wu, Y.; Wang, Z. Y.; Liu, X.; Shen, X.; Zheng, Q. B.; Xue, Q.; Kim, J. K. Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2017, 9, 9059–9069.

    Article  CAS  Google Scholar 

  36. Zeng, Z. H.; Wang, C. X.; Siqueira, G.; Han, D. X.; Huch, A.; Abdolhosseinzadeh, S.; Heier, J.; Nüesch, F.; Zhang, C. F.; Nyström, G. Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 2020, 7, 2000979.

    Article  CAS  Google Scholar 

  37. Yu, Y. H.; Yi, P.; Xu, W. B.; Sun, X.; Deng, G.; Liu, X. F.; Shui, J. L.; Yu, R. H. Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 2022, 14, 77.

    Article  CAS  Google Scholar 

  38. Liu, J.; Mckeon, L.; Garcia, J.; Pinilla, S.; Barwich, S.; Möbius, M.; Stamenov, P.; Coleman, J. N.; Nicolosi, V. Additive manufacturing of Ti3C2-MXene-functionalized conductive polymer hydrogels for electromagnetic-interference shielding. Adv. Mater. 2022, 34, 2106253.

    Article  CAS  Google Scholar 

  39. Sun, X. Y.; Liu, X.; Shen, X.; Wu, Y.; Wang, Z. Y.; Kim, J. K. Graphene foam/carbon nanotube/poly(dimethyl siloxane) composites for exceptional microwave shielding. Compos. Part A: Appl. Sci. Manuf. 2016, 85, 199–206.

    Article  CAS  Google Scholar 

  40. Fang, H. M.; Guo, H. C.; Hu, Y. R.; Ren, Y. J.; Hsu, P. C.; Bai, S. L. In-situ grown hollow Fe3O4 onto graphene foam nanocomposites with high EMI shielding effectiveness and thermal conductivity. Compos. Sci. Technol. 2020, 188, 107975.

    Article  CAS  Google Scholar 

  41. Shui, X. P.; Chung, D. D. L. Nickel filament polymer-matrix composites with low surface impedance and high electromagnetic interference shielding effectiveness. J. Electron. Mater. 1997, 26, 928–934.

    Article  CAS  Google Scholar 

  42. Wu, Y.; Lin, X. Y.; Shen, X.; Sun, X. Y.; Liu, X.; Wang, Z. Y.; Kim, J. K. Exceptional dielectric properties of chlorine-doped graphene oxide/poly(vinylidene fluoride) nanocomposites. Carbon 2015, 89, 102–112.

    Article  CAS  Google Scholar 

  43. Wang, Z. Y.; Han, N. M.; Wu, Y.; Liu, X.; Shen, X.; Zheng, Q. B.; Kim, J. K. Ultrahigh dielectric constant and low loss of highly-aligned graphene aerogel/poly(vinyl alcohol) composites with insulating barriers. Carbon 2017, 123, 385–394.

    Article  CAS  Google Scholar 

  44. Wu, Y.; Wang, Z. Y.; Shen, X.; Liu, X.; Han, N. M.; Zheng, Q. B.; Mai, Y. W.; Kim, J. K. Graphene/boron nitride-polyurethane microlaminates for exceptional dielectric properties and high energy densities. ACS Appl. Mater. Interfaces 2018, 10, 26641–26652.

    Article  CAS  Google Scholar 

  45. Tu, S. B.; Jiang, Q.; Zhang, X. X.; Alshareef, H. N. Large dielectric constant enhancement in MXene percolative polymer composites. ACS Nano 2018, 12, 3369–3377.

    Article  CAS  Google Scholar 

  46. Guo, F. M.; Shen, X.; Zhou, J. M.; Liu, D.; Zheng, Q. B.; Yang, J. L.; Jia, B. H.; Lau, A. K. T.; Kim, J. K. Highly thermally conductive dielectric nanocomposites with synergistic alignments of graphene and boron nitride nanosheets. Adv. Funct. Mater. 2020, 30, 1910826.

    Article  CAS  Google Scholar 

  47. He, Z. Z.; Yu, X.; Yang, J. H.; Zhang, N.; Huang, T.; Wang, Y.; Zhou, Z. W. Largely enhanced dielectric properties of poly(vinylidene fluoride) composites achieved by adding polypyrrole-decorated graphene oxide. Compos. Part A: Appl. Sci. Manuf. 2018, 104, 89–100.

    Article  CAS  Google Scholar 

  48. Liang, C. B.; Song, P.; Qiu, H.; Zhang, Y. L.; Ma, X. T.; Qi, F. Q.; Gu, H. B.; Kong, J.; Cao, D. P.; Gu, J. W. Constructing interconnected spherical hollow conductive networks in silver platelets/reduced graphene oxide foam/epoxy nanocomposites for superior electromagnetic interference shielding effectiveness. Nanoscale 2019, 11, 22590–22598.

    Article  CAS  Google Scholar 

  49. Lin, X. Y.; Shen, X.; Zheng, Q. B.; Yousefi, N.; Ye, L.; Mai, Y. W.; Kim, J. K. Fabrication of highly-aligned, conductive, and strong graphene papers using ultralarge graphene oxide sheets. ACS Nano 2012, 6, 10708–10719.

    Article  CAS  Google Scholar 

  50. Shen, X.; Wang, Z. Y.; Wu, Y.; Liu, X.; He, Y. B.; Zheng, Q. B.; Yang, Q. H.; Kang, F. Y.; Kim, J. K. A three-dimensional multilayer graphene web for polymer nanocomposites with exceptional transport properties and fracture resistance. Mater. Horiz. 2018, 5, 275–284.

    Article  CAS  Google Scholar 

  51. Ji, K. J.; Zhao, H. H.; Zhang, J.; Chen, J.; Dai, Z. D. Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu-Ni alloy integrated with CNTs. Appl. Surf. Sci. 2014, 311, 351–356.

    Article  CAS  Google Scholar 

  52. Shen, X.; Kim, J. K. Building 3D architecture in 2D thin film for effective EMI shielding. Matter 2019, 1, 796–798.

    Article  Google Scholar 

  53. Huang, M.; Wang, C. H.; Quan, L.; Nguyen, T. H. Y.; Zhang, H. Y.; Jiang, Y.; Byun, G.; Ruoff, R. S. CVD growth of porous graphene foam in film form. Matter 2020, 3, 487–497.

    Article  Google Scholar 

  54. Kashani, H.; Giroux, M.; Johnson, I.; Han, J. H.; Wang, C.; Chen, M. W. Unprecedented electromagnetic interference shielding from three-dimensional Bi-continuous nanoporous graphene. Matter 2019, 1, 1077–1087.

    Article  Google Scholar 

  55. Kim, E.; Zhang, H. M.; Lee, J. H.; Chen, H. M.; Zhang, H.; Javed, M. H.; Shen, X.; Kim, J. K. MXene/polyurethane auxetic composite foam for electromagnetic interference shielding and impact attenuation. Compos. Part A: Appl. Sci. Manuf. 2021, 147, 106430.

    Article  CAS  Google Scholar 

  56. Fan, D. L.; Li, N. X.; Li, M. G.; Wang, S.; Li, S. X.; Tang, T. Polyurethane/polydopamine/graphene auxetic composite foam with high-efficient and tunable electromagnetic interference shielding performance. Chem. Eng. J. 2022, 427, 131635.

    Article  CAS  Google Scholar 

  57. Zhang, Y. L.; Yan, Y.; Qiu, H.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. A mini-review of MXene porous films: Preparation, mechanism and application. J. Mater. Sci. Technol. 2022, 103, 42–49.

    Article  Google Scholar 

  58. Sun, R. H.; Zhang, H. B.; Liu, J.; Xie, X.; Yang, R.; Li, Y.; Hong, S.; Yu, Z. Z. Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 2017, 27, 1702807.

    Article  Google Scholar 

  59. Zhao, M. Q.; Xie, X. Q.; Ren, C. E.; Makaryan, T.; Anasori, B.; Wang, G. X.; Gogotsi, Y. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 2017, 29, 1702410.

    Article  Google Scholar 

  60. Li, X. F.; Tao, Z. C.; Hao, B. Y.; Kong, Q. Q.; Liu, Z.; Liu, Z. J.; Guo, Q. G.; Liu, L. Reduced graphene oxide bubbles with tunable electromagnetic shielding effectiveness. Scr. Mater. 2020, 187, 407–412.

    Article  CAS  Google Scholar 

  61. Wang, X. H.; Chen, Y. Q.; Hu, F. Y.; Zhang, S.; Fan, B. B.; Min, Z. Y.; Zhang, R.; Zhao, B.; Wang, H. L.; Lu, H. X. et al. Electromagnetic interference shielding performance of flexible, hydrophobic honeycomb-structured Ag@Ti3C2Tx composites. Adv. Electron. Mater. 2022, 8, 2101028.

    Article  CAS  Google Scholar 

  62. Chen, Q. Q.; Fan, B. B.; Zhang, Q. P.; Wang, S.; Cui, W.; Jia, Y. C.; Xu, S. K.; Zhao, B.; Zhang, R. Design of 3D lightweight Ti3C2Tx MXene porous film with graded holes for efficient electromagnetic interference shielding performance. Ceram. Int. 2022, 48, 14578–14586.

    Article  CAS  Google Scholar 

  63. Liu, X.; Sun, X. Y.; Wang, Z. Y.; Shen, X.; Wu, Y.; Kim, J. K. Planar porous graphene woven fabric/epoxy composites with exceptional electrical, mechanical properties, and fracture toughness. ACS Appl. Mater. Interfaces 2015, 7, 21455–21464.

    Article  CAS  Google Scholar 

  64. Jia, J. J.; Sun, X. Y.; Lin, X. Y.; Shen, X.; Mai, Y. W.; Kim, J. K. Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites. ACS Nano 2014, 8, 5774–5783.

    Article  CAS  Google Scholar 

  65. Shi, M. K.; Shen, M. M.; Guo, X. Y.; Jin, X. X.; Cao, Y. X.; Yang, Y. Y.; Wang, W. J.; Wang, J. F. Ti3C2Tx MXene-decorated nanoporous polyethylene textile for passive and active personal precision heating. ACS Nano 2021, 15, 11396–11405.

    Article  CAS  Google Scholar 

  66. Ling, Z.; Ren, C. E.; Zhao, M. Q.; Yang, J.; Giammarco, J. M.; Qiu, J. S.; Barsoum, M. W.; Gogotsi, Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA 2014, 111, 16676–16681.

    Article  CAS  Google Scholar 

  67. Luo, J. M.; Tao, X. Y.; Zhang, J.; Xia, Y.; Huang, H.; Zhang, L. Y.; Gan, Y. P.; Liang, C.; Zhang, W. K. Sn4+ ion decorated highly conductive Ti3C2 MXene: Promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 2016, 10, 2491–2499.

    Article  CAS  Google Scholar 

  68. Liu, W. H.; Wang, Z. Q.; Su, Y. L.; Li, Q. W.; Zhao, Z. G.; Geng, F. X. Molecularly stacking manganese dioxide/titanium carbide sheets to produce highly flexible and conductive film electrodes with improved pseudocapacitive performances. Adv. Energy Mater. 2017, 7, 1602834.

    Article  Google Scholar 

  69. Boota, M.; Anasori, B.; Voigt, C.; Zhao, M. Q.; Barsoum, M. W.; Gogotsi, Y. Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv. Mater. 2016, 28, 1517–1522.

    Article  CAS  Google Scholar 

  70. Shao, Y. L.; El-Kady, M. F.; Lin, C. W.; Zhu, G. Z.; Marsh, K. L.; Hwang, J. Y.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z.; Kaner, R. B. 3D freeze-casting of cellular graphene films for ultrahigh-power-density supercapacitors. Adv. Mater. 2016, 28, 6719–6726.

    Article  CAS  Google Scholar 

  71. Zhou, Z. H.; Liu, J. Z.; Zhang, X. X.; Tian, D.; Zhan, Z. Y.; Lu, C. H. Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding. Adv. Mater. Interfaces 2019, 6, 1802040.

    Article  Google Scholar 

  72. Ma, Z. Y.; Zhou, X. F.; Deng, W.; Lei, D.; Liu, Z. P. 3D porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage. ACS Appl. Mater. Interfaces 2018, 10, 3634–3643.

    Article  CAS  Google Scholar 

  73. Zhang, Y. L.; Ruan, K. P.; Shi, X. T.; Qiu, H.; Pan, Y.; Yan, Y.; Gu, J. W. Ti3C2Tx/RGO porous composite films with superior electromagnetic interference shielding performances. Carbon 2021, 175, 271–280.

    Article  CAS  Google Scholar 

  74. Lai, D. G.; Chen, X. X.; Wang, Y. Controllable fabrication of elastomeric and porous graphene films with superior foldable behavior and excellent electromagnetic interference shielding performance. Carbon 2020, 158, 728–737.

    Article  CAS  Google Scholar 

  75. Xu, J. D.; Chang, H.; Zhao, B. C.; Li, R. S.; Cui, T. M.; Jian, J.; Yang, Y.; Tian, H.; Zhang, S.; Ren, T. L. Highly stretchable and conformal electromagnetic interference shielding armor with strain sensing ability. Chem. Eng. J. 2022, 431, 133908.

    Article  CAS  Google Scholar 

  76. El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330.

    Article  CAS  Google Scholar 

  77. Yin, L.; Kang, H.; Ma, H. X.; Wang, J. F.; Liu, Y. Y.; Xie, Z. M.; Wang, Y. S.; Fan, Z. M. Sunshine foaming of compact Ti3C2Tx MXene film for highly efficient electromagnetic interference shielding and energy storage. Carbon 2021, 182, 124–133.

    Article  CAS  Google Scholar 

  78. Shen, B.; Li, Y.; Yi, D.; Zhai, W. T.; Wei, X. C.; Zheng, W. G. Microcellular graphene foam for improved broadband electromagnetic interference shielding. Carbon 2016, 102, 154–160.

    Article  CAS  Google Scholar 

  79. Weng, C. X.; Wang, G. R.; Dai, Z. H.; Pei, Y. M.; Liu, L. Q.; Zhang, Z. Buckled AgNW/MXene hybrid hierarchical sponges for high-performance electromagnetic interference shielding. Nanoscale 2019, 11, 22804–22812.

    Article  CAS  Google Scholar 

  80. Zeng, Z. H.; Wu, N.; Wei, J. J.; Yang, Y. F.; Wu, T. T.; Li, B.; Hauser, S. B.; Yang, W. D.; Liu, J. R.; Zhao, S. Y. Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 2022, 14, 59.

    Article  CAS  Google Scholar 

  81. Shen, B.; Li, Y.; Zhai, W. T.; Zheng, W. G. Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding. ACS Appl. Mater. Interfaces 2016, 8, 8050–8057.

    Article  CAS  Google Scholar 

  82. Fu, B. Q.; Ren, P. G.; Guo, Z. Z.; Du, Y. L.; Jin, Y. L.; Sun, Z. F.; Dai, Z.; Ren, F. Construction of three-dimensional interconnected graphene nanosheet network in thermoplastic polyurethane with highly efficient electromagnetic interference shielding. Compos. Part B: Eng. 2021, 215, 108813.

    Article  CAS  Google Scholar 

  83. Cheng, H. R.; Xing, L. L.; Zuo, Y.; Pan, Y. M.; Huang, M. N.; Alhadhrami, A.; Ibrahim, M. M.; El-Bahy, Z. M.; Liu, C. T.; Shen, C. Y. et al. Constructing nickel chain/MXene networks in melamine foam towards phase change materials for thermal energy management and absorption-dominated electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 2022, 5, 755–765.

    Article  CAS  Google Scholar 

  84. Ma, W. J.; Cai, W. R.; Chen, W. H.; Liu, P. J.; Wang, J. F.; Liu, Z. X. A novel structural design of shielding capsule to prepare high-performance and self-healing MXene-based sponge for ultra-efficient electromagnetic interference shielding. Chem. Eng. J. 2021, 426, 130729.

    Article  CAS  Google Scholar 

  85. Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  CAS  Google Scholar 

  86. Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424–428.

    Article  CAS  Google Scholar 

  87. Nguyen, V. T.; Min, B. K.; Yi, Y.; Kim, S. J.; Choi, C. G. MXene(Ti3C2Tx)/graphene/PDMS composites for multifunctional broadband electromagnetic interference shielding skins. Chem. Eng. J. 2020, 393, 124608.

    Article  CAS  Google Scholar 

  88. Kong, L.; Yin, X. W.; Han, M. K.; Yuan, X. Y.; Hou, Z. X.; Ye, F.; Zhang, L. T.; Cheng, L. F.; Xu, Z. W.; Huang, J. F. Macroscopic bioinspired graphene sponge modified with in-situ grown carbon nanowires and its electromagnetic properties. Carbon 2017, 111, 94–102.

    Article  CAS  Google Scholar 

  89. Yang, Y. L.; Zuo, Y.; Feng, L.; Hou, X. J.; Suo, G. Q.; Ye, X. H.; Zhang, L. Powerful and lightweight electromagnetic-shielding carbon nanotube/graphene foam/silicon carbide composites. Mater. Lett. 2019, 256, 126634.

    Article  CAS  Google Scholar 

  90. Shao, G. F.; Hanaor, D. A. H.; Shen, X. D.; Gurlo, A. Freeze casting: From low-dimensional building blocks to aligned porous structures—A review of novel materials, methods, and applications. Adv. Mater. 2020, 32, 1907176.

    Article  CAS  Google Scholar 

  91. Zhao, S.; Zhang, H. B.; Luo, J. Q.; Wang, Q. W.; Xu, B.; Hong, S.; Yu, Z. Z. Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 2018, 12, 11193–11202.

    Article  CAS  Google Scholar 

  92. Yang, J.; Yang, W.; Chen, W.; Tao, X. M. An elegant coupling: Freeze-casting and versatile polymer composites. Prog. Polym. Sci. 2020, 109, 101289.

    Article  CAS  Google Scholar 

  93. Yang, J.; Chan, K. Y.; Venkatesan, H.; Kim, E.; Adegun, M. H.; Lee, J. H.; Shen, X.; Kim, J. K. Superinsulating BNNS/PVA composite aerogels with high solar reflectance for energy-efficient buildings. Nano-Micro Lett. 2022, 14, 54.

    Article  CAS  Google Scholar 

  94. Zhang, H. M.; Shen, X.; Kim, E.; Wang, M. Y.; Lee, J. H.; Chen, H. M.; Zhang, G. C.; Kim, J. K. Integrated water and thermal managements in bioinspired hierarchical MXene aerogels for highly efficient solar-powered water evaporation. Adv. Funct. Mater. 2022, 32, 2111794.

    Article  CAS  Google Scholar 

  95. Wang, Z. Y.; Shen, X.; Han, N. M.; Liu, X.; Wu, Y.; Ye, W. J.; Kim, J. K. Ultralow electrical percolation in graphene aerogel/epoxy composites. Chem. Mater. 2016, 28, 6731–6741.

    Article  CAS  Google Scholar 

  96. Wang, C. H.; Chen, X.; Wang, B.; Huang, M.; Wang, B.; Jiang, Y.; Ruoff, R. S. Freeze-casting produces a graphene oxide aerogel with a radial and centrosymmetric structure. ACS Nano 2018, 12, 5816–5825.

    Article  CAS  Google Scholar 

  97. Xu, W. Z.; Xing, Y.; Liu, J.; Wu, H. P.; Cui, Y.; Li, D. W.; Guo, D. Y.; Li, C. R.; Liu, A. P.; Bai, H. Efficient water transport and solar steam generation via radially, hierarchically structured aerogels. ACS Nano 2019, 13, 7930–7938.

    Article  CAS  Google Scholar 

  98. Bian, R. J.; He, G. L.; Zhi, W. Q.; Xiang, S. L.; Wang, T. W.; Cai, D. Y. Ultralight MXene-based aerogels with high electromagnetic interference shielding performance. J. Mater. Chem. C 2019, 7, 474–478.

    Article  CAS  Google Scholar 

  99. Han, M. K.; Yin, X. W.; Hantanasirisakul, K.; Li, X. L.; Iqbal, A.; Hatter, C. B.; Anasori, B.; Koo, C. M.; Torita, T.; Soda, Y. et al. Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption. Adv. Opt. Mater. 2019, 7, 1900267.

    Article  Google Scholar 

  100. Tetik, H.; Orangi, J.; Yang, G.; Zhao, K. R.; Mujib, S. B.; Singh, G.; Beidaghi, M.; Lin, D. 3D printed MXene aerogels with truly 3D macrostructure and highly engineered microstructure for enhanced electrical and electrochemical performance. Adv. Mater. 2022, 34, 2104980.

    Article  CAS  Google Scholar 

  101. Cong, H. P.; Wang, P.; Yu, S. H. Stretchable and self-healing graphene oxide-polymer composite hydrogels: A dual-network design. Chem. Mater. 2013, 25, 3357–3362.

    Article  CAS  Google Scholar 

  102. Shang, T. X.; Lin, Z. F.; Qi, C. S.; Liu, X. C.; Li, P.; Tao, Y.; Wu, Z. T.; Li, D. W.; Simon, P.; Yang, Q. H. 3D Macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater. 2019, 29, 1903960.

    Article  Google Scholar 

  103. Li, C.; Shi, G. Q. Functional gels based on chemically modified graphenes. Adv. Mater. 2014, 26, 3992–4012.

    Article  CAS  Google Scholar 

  104. Wang, M.; Duan, X. D.; Xu, Y. X.; Duan, X. F. Functional three-dimensional graphene/polymer composites. ACS Nano 2016, 10, 7231–7247.

    Article  CAS  Google Scholar 

  105. Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010, 4, 4324–4330.

    Article  CAS  Google Scholar 

  106. Wang, Z. Y.; Shen, X.; Akbari Garakani, M.; Lin, X. Y.; Wu, Y.; Liu, X.; Sun, X. Y.; Kim, J. K. Graphene aerogel/epoxy composites with exceptional anisotropic structure and properties. ACS Appl. Mater. Interfaces 2015, 7, 5538–5549.

    Article  CAS  Google Scholar 

  107. Lai, D. G.; Chen, X. X.; Wang, G.; Xu, X. H.; Wang, Y. Arbitrarily reshaping and instantaneously self-healing graphene composite hydrogel with molecule polarization-enhanced ultrahigh electromagnetic interference shielding performance. Carbon 2022, 188, 513–522.

    Article  CAS  Google Scholar 

  108. Yang, W. X.; Shao, B. W.; Liu, T. Y.; Zhang, Y. Y.; Huang, R.; Chen, F.; Fu, Q. Robust and mechanically and electrically self-healing hydrogel for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2018, 10, 8245–8257.

    Article  CAS  Google Scholar 

  109. Zhu, Y. Y.; Liu, J.; Guo, T.; Wang, J. J.; Tang, X. Z.; Nicolosi, V. Multifunctional Ti3C2Tx MXene Composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding. ACS Nano 2021, 15, 1465–1474.

    Article  CAS  Google Scholar 

  110. Zhou, C. X.; Yuan, S. W.; Dai, T. W.; Zhou, S. T.; Zou, H. W.; Liu, P. B. Environment-adaptable PAM/PVA semi-IPN hydrogels reinforced by GO for high electromagnetic shielding performance. Polymer 2022, 253, 125028.

    Article  CAS  Google Scholar 

  111. Dai, Y.; Wu, X. Y.; Li, L. L.; Zhang, Y.; Deng, Z. M.; Yu, Z. Z.; Zhang, H. B. 3D Printing of resilient, lightweight and conductive MXene/reduced graphene oxide architectures for broadband electromagnetic interference shielding. J. Mater. Chem. A 2022, 10, 11375–11385.

    Article  CAS  Google Scholar 

  112. Ghaffarkhah, A.; Kamkar, M.; Dijvejin, Z. A.; Riazi, H.; Ghaderi, S.; Golovin, K.; Soroush, M.; Arjmand, M. High-resolution extrusion printing of Ti3C2-based inks for wearable human motion monitoring and electromagnetic interference shielding. Carbon 2022, 191, 277–289.

    Article  CAS  Google Scholar 

  113. Zhu, C.; Han, T. Y. J.; Duoss, E. B.; Golobic, A. M.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A. Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 2015, 6, 6962.

    Article  CAS  Google Scholar 

  114. Chizari, K.; Arjmand, M.; Liu, Z.; Sundararaj, U.; Therriault, D. Three-dimensional printing of highly conductive polymer nanocomposites for EMI shielding applications. Mater. Today Commun. 2017, 11, 112–118.

    Article  CAS  Google Scholar 

  115. Liu, S. J.; Bastola, A. K.; Li, L. A 3D printable and mechanically robust hydrogel based on alginate and graphene oxide. ACS Appl. Mater. Interfaces 2017, 9, 41473–41481.

    Article  CAS  Google Scholar 

  116. Moyano, J. J.; Gómez-Gómez, A.; Pérez-Coll, D.; Belmonte, M.; Miranzo, P.; Osendi, M. I. Filament printing of graphene-based inks into self-supported 3D architectures. Carbon 2019, 151, 94–102.

    Article  CAS  Google Scholar 

  117. Yao, Y. G.; Fu, K. K.; Yan, C. Y.; Dai, J. Q.; Chen, Y. N.; Wang, Y. B.; Zhang, B. L.; Hitz, E.; Hu, L. B. Three-dimensional printable high-temperature and high-rate heaters. ACS Nano 2016, 10, 5272–5279.

    Article  CAS  Google Scholar 

  118. Gao, T. T.; Yang, Z.; Chen, C. J.; Li, Y. J.; Fu, K.; Dai, J. Q.; Hitz, E. M.; Xie, H.; Liu, B. Y.; Song, J. W. et al. Three-dimensional printed thermal regulation textiles. ACS Nano 2017, 11, 11513–11520.

    Article  CAS  Google Scholar 

  119. Zhang, M. C.; Wang, Y. L.; Jian, M. Q.; Wang, C. Y.; Liang, X. P.; Niu, J. L.; Zhang, Y. Y. Spontaneous alignment of graphene oxide in hydrogel during 3D printing for multistimuli-responsive actuation. Adv. Sci. 2020, 7, 1903048.

    Article  CAS  Google Scholar 

  120. Ling, J. Q.; Zhai, W. T.; Feng, W. W.; Shen, B.; Zhang, J. F.; Zheng, W. G. Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2013, 5, 2677–2684.

    Article  CAS  Google Scholar 

  121. Xia, S. H.; Wei, C. L.; Tang, J. C.; Yan, J. H. Tensile stress-gated electromagnetic interference shielding fabrics with real-time adjustable shielding efficiency. ACS Sustainable Chem. Eng. 2021, 9, 13999–14005.

    Article  CAS  Google Scholar 

  122. Zhu, R. Q.; Li, Z. Y.; Deng, G.; Yu, Y. H.; Shui, J. L.; Yu, R. H.; Pan, C. F.; Liu, X. F. Anisotropic magnetic liquid metal film for wearable wireless electromagnetic sensing and smart electromagnetic interference shielding. Nano Energy 2022, 92, 106700.

    Article  CAS  Google Scholar 

  123. Wen, B.; Cao, M. S.; Lu, M. M.; Cao, W. Q.; Shi, H. L.; Liu, J.; Wang, X. X.; Jin, H. B.; Fang, X. Y.; Wang, W. Z. et al. Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 2014, 26, 3484–3489.

    Article  CAS  Google Scholar 

  124. Cao, M. S.; Wang, X. X.; Cao, W. Q.; Fang, X. Y.; Wen, B.; Yuan, J. Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 2018, 13, 1800987.

    Article  Google Scholar 

  125. Lv, H. L.; Yang, Z. H.; Ong, S. J. H.; Wei, C.; Liao, H. B.; Xi, S. B.; Du, Y. H.; Ji, G. B.; Xu, Z. J. A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility. Adv. Funct. Mater. 2019, 29, 1900163.

    Article  Google Scholar 

  126. Wang, Y. N.; Cheng, X. D.; Song, W. L.; Ma, C. J.; Bian, X. M.; Chen, M. J. Hydro-sensitive sandwich structures for self-tunable smart electromagnetic shielding. Chem. Eng. J. 2018, 344, 342–352.

    Article  CAS  Google Scholar 

  127. Liu, X. F.; Li, Y.; Sun, X.; Tang, W. K.; Deng, G.; Liu, Y. J.; Song, Z. M.; Yu, Y. H.; Yu, R. H.; Dai, L. M. et al. Off/on switchable smart electromagnetic interference shielding aerogel. Matter 2021, 3, 1735–1747.

    Article  Google Scholar 

  128. Zhu, M.; Yan, X. X.; Xu, H. L.; Xu, Y. J.; Kong, L. Ultralight, compressible, and anisotropic MXene@wood nanocomposite aerogel with excellent electromagnetic wave shielding and absorbing properties at different directions. Carbon 2021, 182, 806–814.

    Article  CAS  Google Scholar 

  129. Chen, J. L.; Shen, B.; Jia, X. C.; Liu, Y. F.; Zheng, W. G. Lightweight and compressible anisotropic honeycomb-like graphene composites for highly tunable electromagnetic shielding with multiple functions. Mater. Today Phys. 2022, 23, 100695.

    Article  Google Scholar 

  130. Li, H. L.; Jing, L.; Ngoh, Z. L.; Tay, R. Y.; Lin, J. J.; Wang, H.; Tsang, S. H.; Teo, E. H. T. Engineering of high-density thin-layer graphite foam-based composite architectures with superior compressibility and excellent electromagnetic interference shielding performance. ACS Appl. Mater. Interfaces 2018, 10, 41707–41716.

    Article  CAS  Google Scholar 

  131. Wu, X. Y.; Han, B. Y.; Zhang, H. B.; Xie, X.; Tu, T. X.; Zhang, Y.; Dai, Y.; Yang, R.; Yu, Z. Z. Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 2020, 381, 122622.

    Article  CAS  Google Scholar 

  132. Jia, X. C.; Shen, B.; Zhang, L. H.; Zheng, W. G. Construction of compressible polymer/MXene composite foams for highperformance absorption-dominated electromagnetic shielding with ultra-low reflectivity. Carbon 2021, 173, 932–940.

    Article  CAS  Google Scholar 

  133. Yang, B. Q.; Dai, K. R.; Bi, L.; Zhang, W. L.; Li, C. S.; Zhang, J. M.; Yu, D.; Wang, J.; Zhang, H. Superior electromagnetic shielding and mechanical buffering achieved by alternating conductive and porous supramolecular networks. Adv. Eng. Mater. 2022, 23, 2101511.

    Article  Google Scholar 

  134. Zhang, Y.; Fang, X. X.; Wen, B. Y. Asymmetric Ni/PVC films for high-performance electromagnetic interference shielding. Chin. J. Polym. Sci. 2015, 33, 899–907.

    Article  CAS  Google Scholar 

  135. Wang, H. Y.; Li, T. T.; Wu, L. W.; Lou, C. W.; Lin, J. H. Multifunctional, polyurethane-based foam composites reinforced by a fabric structure: Preparation, mechanical, acoustic, and EMI shielding properties. Materials 2018, 11, 2085.

    Article  Google Scholar 

  136. Mei, H.; Lu, M. Y.; Zhou, S. X.; Cheng, L. F. Enhanced impact resistance and electromagnetic interference shielding of carbon nanotubes films composites. J. Appl. Polym. Sci. 2021, 138, 50033.

    Article  CAS  Google Scholar 

  137. Yang, W.; Bai, H. X.; Jiang, B.; Wang, C. N.; Ye, W. M.; Li, Z. X.; Xu, C.; Wang, X. B.; Li, Y. F. Flexible and densified graphene/waterborne polyurethane composite film with thermal conducting property for high performance electromagnetic interference shielding. Nano Res., in press, https://doi.org/10.1007/s12274-022-4414-3.

  138. Shen, X.; Kim, J. K. 3D graphene and boron nitride structures for nanocomposites with tailored thermal conductivities: Recent advances and perspectives. Funct. Compos. Struct. 2020, 2, 022001.

    Article  CAS  Google Scholar 

  139. Yu, S.; Shen, X.; Kim, J. K. Beyond homogeneous dispersion: Oriented conductive fillers for high κ nanocomposites. Mater. Horiz. 2021, 8, 3009–3042.

    Article  CAS  Google Scholar 

  140. Shen, X.; Wang, Z. Y.; Wu, Y.; Liu, X.; He, Y. B.; Kim, J. K. Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites. Nano Lett. 2016, 16, 3585–3593.

    Article  CAS  Google Scholar 

  141. Hamidinejad, M.; Salari, M.; Ma, L.; Moghimian, N.; Zhao, B.; Taylor, H. K.; Filleter, T.; Park, C. B. Electrically and thermally graded microcellular polymer/graphene nanoplatelet composite foams and their EMI shielding properties. Carbon 2022, 187, 153–164.

    Article  CAS  Google Scholar 

  142. Du, Y. Q.; Xu, J.; Fang, J. Y.; Zhang, Y. T.; Liu, X. Y.; Zuo, P. Y.; Zhuang, Q. X. Ultralight, highly compressible, thermally stable MXene/aramid nanofiber anisotropic aerogels for electromagnetic interference shielding. J. Mater. Chem. A 2022, 10, 6690–6700.

    Article  CAS  Google Scholar 

  143. Liu, C.; Wu, W.; Chen, Q. M.; Wang, Y.; Cui, S. F.; Yang, H. 3D expanded graphite frameworks for dual-functional polymer composites with exceptional thermal conductive and electromagnetic interference shielding capabilities. ACS Appl. Electron. Mater. 2022, 4, 707–717.

    Article  CAS  Google Scholar 

  144. Song, P.; Liu, B.; Liang, C. B.; Ruan, K. P.; Qiu, H.; Ma, Z. L.; Guo, Y. Q.; Gu, J. W. Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 2021, 13, 91.

    Article  CAS  Google Scholar 

  145. Li, J. C.; Zhao, X. Y.; Wu, W. J.; Ji, X. W.; Lu, Y. L.; Zhang, L. Q. Bubble-templated rGO-graphene nanoplatelet foams encapsulated in silicon rubber for electromagnetic interference shielding and high thermal conductivity. Chem. Eng. J. 2021, 415, 129054.

    Article  CAS  Google Scholar 

  146. Li, R. S.; Ding, L.; Gao, Q.; Zhang, H. M.; Zeng, D.; Zhao, B.; Fan, B. B.; Zhang, R. Tuning of anisotropic electrical conductivity and enhancement of EMI shielding of polymer composite foam via CO2-assisted delamination and orientation of MXene. Chem. Eng. J. 2021, 415, 128930.

    Article  CAS  Google Scholar 

  147. Deng, Z. M.; Tang, P. P.; Wu, X. Y.; Zhang, H. B.; Yu, Z. Z. Superelastic, ultralight, and conductive Ti3C2Tx MXene/acidified carbon nanotube anisotropic aerogels for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2021, 13, 20539–20547.

    Article  CAS  Google Scholar 

  148. Cheng, Y.; Li, X. Y.; Qin, Y. X.; Fang, Y. T.; Liu, G. L.; Wang, Z. Y.; Matz, J.; Dong, P.; Shen, J. F.; Ye, M. X. Hierarchically porous polyimide/Ti3C2Tx film with stable electromagnetic interference shielding after resisting harsh conditions. Sci. Adv. 2021, 7, eabj1663.

    Article  CAS  Google Scholar 

  149. Xia, B. H.; Zhang, X. H.; Jiang, J.; Wang, Y.; Li, T.; Wang, Z. C.; Chen, M. Q.; Liu, T. X.; Dong, W. F. Facile preparation of high strength, lightweight and thermal insulation polyetherimide/Ti3C2Tx MXenes/Ag nanoparticles composite foams for electromagnetic interference shielding. Compos. Commun. 2022, 29, 101028.

    Article  Google Scholar 

  150. Zhang, H. M.; Zhang, G. C.; Gao, Q.; Tang, M.; Ma, Z. L.; Qin, J. B.; Wang, M. Y.; Kim, J. K. Multifunctional microcellular PVDF/Ni-chains composite foams with enhanced electromagnetic interference shielding and superior thermal insulation performance. Chem. Eng. J. 2020, 379, 122304.

    Article  Google Scholar 

  151. Qi, F. Q.; Wang, L.; Zhang, Y. L.; Ma, Z. L.; Qiu, H.; Gu, J. W. Robust Ti3C2Tx MXene/starch derived carbon foam composites for superior EMI shielding and thermal insulation. Mater. Today Phys. 2021, 21, 100512.

    Article  CAS  Google Scholar 

  152. Shi, H. G.; Zhao, H. B.; Liu, B. W.; Wang, Y. Z. Multifunctional flame-retardant melamine-based hybrid foam for infrared stealth, thermal insulation, and electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2021, 13, 26505–26514.

    Article  CAS  Google Scholar 

  153. Shi, Y. Y.; Xiang, Z.; Cai, L.; Pan, F.; Dong, Y. Y.; Zhu, X. J.; Cheng, J.; Jiang, H. J.; Lu, W. Multi-interface assembled N-doped MXene/HCFG/AgNW films for wearable electromagnetic shielding devices with multimodal energy conversion and healthcare monitoring performances. ACS Nano 2022, 16, 7816–7833.

    Article  CAS  Google Scholar 

  154. Hu, D. W.; Wang, S. Q.; Zhang, C.; Yi, P. S.; Jiang, P. K.; Huang, X. Y. Ultrathin MXene-aramid nanofiber electromagnetic interference shielding films with tactile sensing ability withstanding harsh temperatures. Nano Res. 2021, 14, 2837–2845.

    Article  CAS  Google Scholar 

  155. Huang, W. C.; Hu, L. P.; Tang, Y. F.; Xie, Z. J.; Zhang, H. Recent advances in functional 2D MXene-based nanostructures for next-generation devices. Adv. Funct. Mater. 2020, 30, 2005223.

    Article  CAS  Google Scholar 

  156. Chen, Y. A.; Li, Y. H.; Liu, Y.; Chen, P.; Zhang, C. Z.; Qi, H. S. Holocellulose Nanofibril-assisted intercalation and stabilization of Ti3C2Tx MXene inks for multifunctional sensing and EMI shielding applications. ACS Appl. Mater. Interfaces 2021, 13, 36221–36231.

    Article  CAS  Google Scholar 

  157. Zhu, S.; Peng, S. P.; Qiang, Z.; Ye, C. H.; Zhu, M. F. Cryogenic-environment resistant, highly elastic hybrid carbon foams for pressure sensing and electromagnetic interference shielding. Carbon 2022, 193, 258–271.

    Article  CAS  Google Scholar 

  158. Dai, Y.; Wu, X. Y.; Liu, Z. S.; Zhang, H. B.; Yu, Z. Z. Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos. Part B:Eng. 2020, 200, 108263.

    Article  CAS  Google Scholar 

  159. Cheng, Y.; Zhu, W. D.; Lu, X. F.; Wang, C. Lightweight and flexible MXene/carboxymethyl cellulose aerogel for electromagnetic shielding, energy harvest and self-powered sensing. Nano Energy 2022, 98, 107229.

    Article  CAS  Google Scholar 

  160. Xu, J. D.; Li, R. S.; Ji, S. R.; Zhao, B. C.; Cui, T. R.; Tan, X. C.; Gou, G. Y.; Jian, J. M.; Xu, H. K.; Qiao, Y. C. et al. Multifunctional graphene microstructures inspired by honeycomb for ultrahigh performance electromagnetic interference shielding and wearable applications. ACS Nano 2021, 15, 8907–8918.

    Article  CAS  Google Scholar 

  161. Zhou, Z. H.; Panatdasirisuk, W.; Mathis, T. S.; Anasori, B.; Lu, C. H.; Zhang, X. X.; Liao, Z. W.; Gogotsi, Y.; Yang, S. Layer-by-layer assembly of MXene and carbon nanotubes on electrospun polymer films for flexible energy storage. Nanoscale 2018, 10, 6005–6013.

    Article  CAS  Google Scholar 

  162. Hu, L. B.; Pasta, M.; La Mantia, F.; Cui, L. F.; Jeong, S.; Deshazer, H. D.; Choi, J. W.; Han, S. M.; Cui, Y. Stretchable, porous, and conductive energy textiles. Nano Lett. 2010, 10, 708–714.

    Article  CAS  Google Scholar 

  163. Liu, L. X.; Chen, W.; Zhang, H. B.; Wang, Q. W.; Guan, F. L.; Yu, Z. Z. Flexible and multifunctional silk textiles with biomimetic leaflike MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 2019, 29, 1905197.

    Article  CAS  Google Scholar 

  164. Zhang, X. S.; Wang, X. F.; Lei, Z. W.; Wang, L. L.; Tian, M. W.; Zhu, S. F.; Xiao, H.; Tang, X. N.; Qu, L. J. Flexible MXene-decorated fabric with interwoven conductive networks for integrated joule heating, electromagnetic interference shielding, and strain sensing performances. ACS Appl. Mater. Interfaces 2020, 12, 14459–14467.

    Article  CAS  Google Scholar 

  165. Zheng, X. H.; Nie, W. Q.; Hu, Q. L.; Wang, X. W.; Wang, Z. Q.; Zou, L. H.; Hong, X. H.; Yang, H. W.; Shen, J. K.; Li, C. L. Multifunctional RGO/Ti3C2Tx MXene fabrics for electrochemical energy storage, electromagnetic interference shielding, electrothermal and human motion detection. Mater. Des. 2021, 200, 109442.

    Article  CAS  Google Scholar 

  166. Zhang, D. B.; Yin, R.; Zheng, Y. J.; Li, Q. M.; Liu, H.; Liu, C. T.; Shen, C. Y. Multifunctional MXene/CNTs based flexible electronic textile with excellent strain sensing, electromagnetic interference shielding and joule heating performances. Chem. Eng. J. 2022, 438, 135587.

    Article  CAS  Google Scholar 

  167. Zheng, X. H.; Wang, P.; Zhang, X. S.; Hu, Q. L.; Wang, Z. Q.; Nie, W. Q.; Zou, L. H.; Li, C. L.; Han, X. Breathable, durable and bark-shaped MXene/textiles for high-performance wearable pressure sensors, EMI shielding and heat physiotherapy. Compos. Part A: Appl. Sci. Manuf. 2022, 152, 106700.

    Article  CAS  Google Scholar 

  168. Simon, R. M. EMI shielding through conductive plastics. Polym. Plast. Technol. Eng. 1981, 17, 1–10.

    Article  CAS  Google Scholar 

  169. Ryu, S. H.; Park, B.; Han, Y. K.; Kwon, S. J.; Kim, T.; Lamouri, R.; Kim, K. H.; Lee, S. B. Electromagnetic wave shielding flexible films with near-zero reflection in the 5G frequency band. J. Mater. Chem. A 2022, 10, 4446–4455.

    Article  CAS  Google Scholar 

  170. Ryu, S. H.; Han, Y. K.; Kwon, S. J.; Kim, T.; Jung, B. M.; Lee, S. B.; Park, B. Absorption-dominant, low reflection EMI shielding materials with integrated metal mesh/TPU/CIP composite. Chem. Eng. J. 2022, 428, 131167.

    Article  CAS  Google Scholar 

  171. Ryu, S. H.; Kim, H.; Park, S. W.; Kwon, S. J.; Kim, S.; Lim, H. R.; Park, B.; Lee, S. B.; Choa, Y. H. Millimeter-scale percolated polyethylene/graphene composites for 5G electromagnetic shielding. ACS Appl. Nano Mater. 2022, 5, 8429–8439.

    Article  CAS  Google Scholar 

  172. Lin, Z. H.; Liu, J.; Peng, W.; Zhu, Y. Y.; Zhao, Y.; Jiang, K.; Peng, M.; Tan, Y. W. Highly stable 3D Ti3C2Tx MXene-based foam architectures toward high-performance terahertz radiation shielding. ACS Nano 2020, 14, 2109–2117.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the Research Grants Council (GRF Projects: 16205517, 16209917, and 16200720) and the Innovation and Technology Commission (ITS/012/19) of Hong Kong SAR, and start-up fund for new recruits of PolyU (Nos. P0038855 and P0038858). This project was also supported by the Research Institute for Sports Science and Technology of PolyU (No. P0043535).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi Shen or Jang-Kyo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, X., Kim, JK. Graphene and MXene-based porous structures for multifunctional electromagnetic interference shielding. Nano Res. 16, 1387–1413 (2023). https://doi.org/10.1007/s12274-022-4938-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4938-6

Keywords

Navigation