Skip to main content
Log in

Efficient quantum dot infrared solar cells with enhanced low-energy photon conversion via optical engineering

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Infrared (IR) solar cells are promising devices for improving the power conversion efficiency (PCE) of conventional solar cells by expanding the utilization region of the sunlight spectrum to near-infrared range. IR solar cells based on colloidal quantum dots (QDs) have attracted extensive attention due to the widely tunable absorption spectrum controlled by dot size and the unique solution processibility. However, the trade-off in QD solar cells between light absorption and photo-generated carrier collection has limited the further improvement of PCE. Here, we present high-performance PbS QD IR solar cells resulting from the combination of boosted light absorption and optimized carrier extraction. By constructing an optical resonance cavity, the light absorption is significantly enhanced in the range of 1,150–1,300 nm at a relatively thin photoactive layer. Meanwhile, the thin photoactive layer facilitates efficient carrier extraction. Consequently, the PbS QD IR solar cells exhibit a highly efficient photoelectric conversion in the IR region, resulting in a high IR PCE of 1.3% which is comparable to the highest value of solution-processed IR solar cells based on PbSe QDs. These results demonstrate that constructing an optical resonance cavity is a reasonable strategy for effective conversion of photons in the devices aiming at light in a relatively narrow wavelength range, such as IR solar cells and narrow band photodetectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shi, G. Z.; Wang, H. B.; Zhang, Y. H.; Cheng, C.; Zhai, T. S.; Chen, B. T.; Liu, X. Y.; Jono, R.; Mao, X. N.; Liu, Y. et al. The effect of water on colloidal quantum dot solar cells. Nat. Commun. 2021, 12, 4381.

    Article  CAS  Google Scholar 

  2. Sun, B.; Johnston, A.; Xu, C.; Wei, M. Y.; Huang, Z. R.; Jiang, Z.; Zhou, H.; Gao, Y. J.; Dong, Y. T.; Ouellette, O. et al. Monolayer perovskite bridges enable strong quantum dot coupling for efficient solar cells. Joule 2020, 4, 1542–1556.

    Article  CAS  Google Scholar 

  3. Jia, D. L.; Chen, J. X.; Zheng, S. Y.; Phuyal, D.; Yu, M.; Tian, L.; Liu, J. H.; Karis, O.; Rensmo, H.; Johansson, E. M. J. et al. Highly stabilized quantum dot ink for efficient infrared light absorbing solar cells. Adv. Energy Mater. 2019, 9, 1902809.

    Article  CAS  Google Scholar 

  4. Sytnyk, M.; Yakunin, S.; Schöfberger, W.; Lechner, R. T.; Burian, M.; Ludescher, L.; Killilea, N. A.; Yousefiamin, A.; Kriegner, D.; Stangl, J. et al. Quasi-epitaxial metal-halide perovskite ligand shells on PbS nanocrystals. ACS Nano 2017, 11, 1246–1256.

    Article  CAS  Google Scholar 

  5. McDonald, S. A.; Konstantatos, G.; Zhang, S. G.; Cyr, P. W.; Klem, E. J. D.; Levina, L.; Sargent, E. H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 2005, 4, 138–142.

    Article  CAS  Google Scholar 

  6. Yang, Z. Y.; Voznyy, O.; Liu, M. X.; Yuan, M. J.; Ip, A. H.; Ahmed, O. S.; Levina, L.; Kinge, S.; Hoogland, S.; Sargent, E. H. All-quantum-dot infrared light-emitting diodes. ACS Nano 2015, 9, 12327–12333.

    Article  CAS  Google Scholar 

  7. Tang, H. D.; Zhong, J. L.; Chen, W.; Shi, K. M.; Mei, G. D.; Zhang, Y. N.; Wen, Z. L.; Müller-Buschbaum, P.; Wu, D.; Wang, K. et al. Lead sulfide quantum dot photodetector with enhanced responsivity through a two-step ligand-exchange method. ACS Appl. Nano Mater. 2019, 2, 6135–6143.

    Article  CAS  Google Scholar 

  8. Choi, H.; Ko, J. H.; Kim, Y. H.; Jeong, S. Steric-hindrance-driven shape transition in PbS quantum dots: Understanding size-dependent stability. J. Am. Chem. Soc. 2013, 135, 5278–5281.

    Article  CAS  Google Scholar 

  9. Yuan, M. J.; Liu, M. X.; Sargent, E. H. Colloidal quantum dot solids for solution-processed solar cells. Nat. Energy 2016, 1, 16016.

    Article  CAS  Google Scholar 

  10. Chen, J. X.; Zheng, S. Y.; Jia, D. L.; Liu, W. L.; Andruszkiewicz, A.; Qin, C. C.; Yu, M.; Liu, J. H.; Johansson, E. M. J.; Zhang, X. L. Regulating thiol ligands of p-type colloidal quantum dots for efficient infrared solar cells. ACS Energy Lett. 2021, 6, 1970–1979.

    Article  CAS  Google Scholar 

  11. Xia, Y.; Chen, W.; Zhang, P.; Liu, S. S.; Wang, K.; Yang, X. K.; Tang, H. D.; Lian, L. Y.; He, J. G.; Liu, X. X. et al. Facet control for trap-state suppression in colloidal quantum dot solids. Adv. Funct. Mater. 2020, 30, 2000594.

    Article  CAS  Google Scholar 

  12. Choi, M. J.; García de Arquer, F. P.; Proppe, A. H.; Seifitokaldani, A.; Choi, J.; Kim, J.; Baek, S. W.; Liu, M. X.; Sun, B.; Biondi, M. et al. Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics. Nat. Commun. 2020, 11, 103.

    Article  CAS  Google Scholar 

  13. Kim, H. I.; Baek, S. W.; Cheon, H. J.; Ryu, S. U.; Lee, S.; Choi, M. J.; Choi, K.; Biondi, M.; Hoogland, S.; García de Arquer, F. P. et al. A tuned alternating D-A copolymer hole-transport layer enables colloidal quantum dot solar cells with superior fill factor and efficiency. Adv. Mater. 2020, 32, e2004985.

    Article  Google Scholar 

  14. Chuang, C. H. M.; Brown, P. R.; Bulovic, V.; Bawendi, M. G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 2014, 13, 796–801.

    Article  CAS  Google Scholar 

  15. Liu, M. X.; Voznyy, O.; Sabatini, R.; García de Arquer, F. P.; Munir, R.; Balawi, A. H.; Lan, X. Z.; Fan, F. J.; Walters, G.; Kirmani, A. R. et al. Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 2017, 16, 258–263.

    Article  CAS  Google Scholar 

  16. Xu, J. X.; Voznyy, O.; Liu, M. X.; Kirmani, A. R.; Walters, G.; Munir, R.; Abdelsamie, M.; Proppe, A. H.; Sarkar, A.; García de Arquer, F. P. et al. 2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids. Nat. Nanotechnol. 2018, 13, 456–462.

    Article  CAS  Google Scholar 

  17. Fan, J. Z.; Andersen, N. T.; Biondi, M.; Todorović, P.; Sun, B.; Ouellette, O.; Abed, J.; Sagar, L. K.; Choi, M. J.; Hoogland, S. et al. Mixed lead halide passivation of quantum dots. Adv. Mater. 2019, 31, 1904304.

    Article  CAS  Google Scholar 

  18. Fan, J. Z.; Vafaie, M.; Bertens, K.; Sytnyk, M.; Pina, J. M.; Sagar, L. K.; Ouellette, O.; Proppe, A. H.; Rasouli, A. S.; Gao, Y. J. et al. Micron thick colloidal quantum dot solids. Nano Lett. 2020, 20, 5284–5291.

    Article  CAS  Google Scholar 

  19. Bi, Y.; Bertran, A.; Gupta, S.; Ramiro, I.; Pradhan, S.; Christodoulou, S.; Majji, S. N.; Akgul, M. Z.; Konstantatos, G. Solution processed infrared- and thermo-photovoltaics based on 0.7 eV bandgap PbS colloidal quantum dots. Nanoscale 2019, 11, 838–843.

    Article  CAS  Google Scholar 

  20. Jia, D. L.; Chen, J. X.; Qiu, J. M.; Ma, H. L.; Yu, M.; Liu, J. H.; Zhang, X. L. Tailoring solvent-mediated ligand exchange for CsPbI3 perovskite quantum dot solar cells with efficiency exceeding 16.5%. Joule 2022, 6, 1632–1653.

    Article  CAS  Google Scholar 

  21. Liu, M. X.; Che, F. L.; Sun, B.; Voznyy, O.; Proppe, A.; Munir, R.; Wei, M. Y.; Quintero-Bermudez, R.; Hu, L. L.; Hoogland, S. et al. Controlled steric hindrance enables efficient ligand exchange for stable, infrared-bandgap quantum dot inks. ACS Energy Lett. 2019, 4, 1225–1230.

    Article  CAS  Google Scholar 

  22. Leem, J. W.; Yu, J. S.; Kim, J. N.; Noh, S. K. Theoretical modeling and optimization of III-V GaInP/GaAs/Ge monolithic triple-junction solar cells. J. Korean Phys. Soc. 2014, 64, 1561–1565.

    Article  CAS  Google Scholar 

  23. Tang, X.; Ackerman, M. M.; Shen, G. H.; Guyot-Sionnest, P. Towards infrared electronic eyes: Flexible colloidal quantum dot photovoltaic detectors enhanced by resonant cavity. Small 2019, 15, 1804920.

    Article  Google Scholar 

  24. Lei, W.; Antoszewski, J.; Faraone, L. Progress, challenges, and opportunities for HgCdTe infrared materials and detectors. Appl. Phys. Rev. 2015, 2, 041303.

    Article  Google Scholar 

  25. Ip, A. H.; Kiani, A.; Kramer, I. J.; Voznyy, O.; Movahed, H. F.; Levina, L.; Adachi, M. M.; Hoogland, S.; Sargent, E. H. Infrared colloidal quantum dot photovoltaics via coupling enhancement and agglomeration suppression. ACS Nano 2015, 9, 8833–8842.

    Article  CAS  Google Scholar 

  26. Fan, J. Z.; Liu, M. X.; Voznyy, O.; Sun, B.; Levina, L.; Quintero-Bermudez, R.; Liu, M.; Ouellette, O.; García de Arquer, F. P.; Hoogland, S. et al. Halide re-shelled quantum dot inks for infrared photovoltaics. ACS Appl. Mater. Interfaces 2017, 9, 37536–37541.

    Article  CAS  Google Scholar 

  27. Liu, S. S.; Xiong, K.; Wang, K.; Liang, G. J.; Li, M. Y.; Tang, H. D.; Yang, X. K.; Huang, Z.; Lian, L. Y.; Tan, M. L. et al. Efficiently passivated PbSe quantum dot solids for infrared photovoltaics. ACS Nano 2021, 15, 3376–3386.

    Article  CAS  Google Scholar 

  28. Xia, Y.; Liu, S. S.; Wang, K.; Yang, X. K.; Lian, L. Y.; Zhang, Z. M.; He, J. G.; Liang, G. J.; Wang, S.; Tan, M. L. et al. Cation-exchange synthesis of highly monodisperse PbS quantum dots from ZnS nanorods for efficient infrared solar cells. Adv. Funct. Mater. 2020, 30, 1907379.

    Article  CAS  Google Scholar 

  29. Kim, Y.; Che, F. L.; Jo, J. W.; Choi, J.; García de Arquer, F. P.; Voznyy, O.; Sun, B.; Kim, J.; Choi, M. J.; Quintero-Bermudez, R. et al. A Facet-specific quantum dot passivation strategy for colloid management and efficient infrared photovoltaics. Adv. Mater. 2019, 31, 1805580.

    Article  Google Scholar 

  30. Zherebetskyy, D.; Scheele, M.; Zhang, Y. J.; Bronstein, N.; Thompson, C.; Britt, D.; Salmeron, M.; Alivisatos, P.; Wang, L. W. Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science 2014, 344, 1380–1384.

    Article  CAS  Google Scholar 

  31. Jo, J. W.; Choi, J.; García de Arquer, F. P.; Seifitokaldani, A.; Sun, B.; Kim, Y.; Ahn, H.; Fan, J.; Quintero-Bermudez, R.; Kim, J. et al. Acid-assisted ligand exchange enhances coupling in colloidal quantum dot solids. Nano Lett. 2018, 18, 4417–4423.

    Article  CAS  Google Scholar 

  32. Pattantyus-Abraham, A. G.; Kramer, I. J.; Barkhouse, A. R.; Wang, X. H.; Konstantatos, G.; Debnath, R.; Levina, L.; Raabe, I.; Nazeeruddin, M. K.; Grätzel, M. et al. Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano 2010, 4, 3374–3380.

    Article  CAS  Google Scholar 

  33. Carey, G. H.; Levina, L.; Comin, R.; Voznyy, O.; Sargent, E. H. Record charge carrier diffusion length in colloidal quantum dot solids via mutual dot-to-dot surface passivation. Adv. Mater. 2015, 27, 3325–3330.

    Article  CAS  Google Scholar 

  34. Lan, X. Z.; Voznyy, O.; García de Arquer, F. P.; Liu, M. X.; Xu, J. X.; Proppe, A. H.; Walters, G.; Fan, F. J.; Tan, H. R.; Liu, M. et al. 10.6% certified colloidal quantum dot solar cells via solvent-polarity-engineered halide passivation. Nano Lett. 2016, 16, 4630–4634.

    Article  CAS  Google Scholar 

  35. Sun, B.; Ouellette, O.; García de Arquer, F. P.; Voznyy, O.; Kim, Y.; Wei, M. Y.; Proppe, A. H.; Saidaminov, M. I.; Xu, J. X.; Liu, M. X. et al. Multibandgap quantum dot ensembles for solar-matched infrared energy harvesting. Nat. Commun. 2018, 9, 4003.

    Article  Google Scholar 

  36. Georgitzikis, E.; Malinowski, P. E.; Maes, J.; Hadipour, A.; Hens, Z.; Heremans, P.; Cheyns, D. Optimization of charge carrier extraction in colloidal quantum dots short-wave infrared photodiodes through optical engineering. Adv. Funct. Mater. 2018, 28, 1804502.

    Article  Google Scholar 

  37. Liu, S. S.; Zhang, C. J.; Li, S. Y.; Xia, Y.; Wang, K.; Xiong, K.; Tang, H. D.; Lian, L. Y.; Liu, X. X.; Li, M. Y. et al. Efficient infrared solar cells employing quantum dot solids with strong inter-dot coupling and efficient passivation. Adv. Funct. Mater. 2021, 31, 2006864.

    Article  CAS  Google Scholar 

  38. Lian, L. Y.; Xia, Y.; Zhang, C. W.; Xu, B.; Yang, L.; Liu, H.; Zhang, D. L.; Wang, K.; Gao, J. B.; Zhang, J. B. In situ tuning the reactivity of selenium precursor to synthesize wide range size, ultralarge-scale, and ultrastable PbSe quantum dots. Chem. Mater. 2018, 30, 982–989.

    Article  CAS  Google Scholar 

  39. Huang, Z.; Zhai, G. M.; Zhang, Z. M.; Zhang, C. W.; Xia, Y.; Lian, L. Y.; Fu, X. M.; Zhang, D. L.; Zhang, J. B. Low cost and large scale synthesis of PbS quantum dots with hybrid surface passivation. CrystEngComm 2017, 19, 946–951.

    Article  CAS  Google Scholar 

  40. Willis, S. M.; Cheng, C.; Assender, H. E.; Watt, A. A. R. The transitional heterojunction behavior of PbS/ZnO colloidal quantum dot solar cells. Nano Lett. 2012, 12, 1522–1526.

    Article  CAS  Google Scholar 

  41. Yang, X. K.; Hu, L.; Deng, H.; Qiao, K. K.; Hu, C.; Liu, Z. Y.; Yuan, S. J.; Khan, J.; Li, D. B.; Tang, J. et al. Improving the performance of PbS quantum dot solar cells by optimizing ZnO window layer. Nano-Micro Lett. 2017, 9, 24.

    Article  Google Scholar 

  42. Grinolds, D. D. W.; Brown, P. R.; Harris, D. K.; Bulovic, V.; Bawendi, M. G. Quantum-dot size and thin-film dielectric constant: Precision measurement and disparity with simple models. Nano Lett. 2015, 15, 21–26.

    Article  CAS  Google Scholar 

  43. Jia, D. L.; Chen, J. X.; Mei, X. Y.; Fan, W. T.; Luo, S.; Yu, M.; Liu, J. H.; Zhang, X. L. Surface matrix curing of inorganic CsPbI3 perovskite quantum dots for solar cells with efficiency over 16%. Energy Environ. Sci. 2021, 14, 4599–4609.

    Article  CAS  Google Scholar 

  44. Chen, J. X.; Jia, D. L.; Qiu, J. M.; Zhuang, R. S.; Hua, Y.; Zhang, X. L. Multidentate passivation crosslinking perovskite quantum dots for efficient solar cells. Nano Energy 2022, 96, 107140.

    Article  CAS  Google Scholar 

  45. Kim, J. K.; Song, J. H.; Choi, H.; Baik, S. J.; Jeong, S. Space charge limited conduction in ultrathin PbS quantum dot solid diodes. J. Appl. Phys. 2014, 115, 054302.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2021YFA0715502), the National Natural Science Foundation of China (Nos. 61974052, and 61904065), the Innovation Project of Optics Valley Laboratory (No. OVL2021BG009), the Fund from Science, Technology and Innovation Commission of Shenzhen Municipality (No. GJHZ20210705142540010), and the Fundamental Research Funds for the Central Universities (WUT: 2022IVA055). The authors thank the Testing Center of HUST.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Gao or Jianbing Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Li, MY., Xiong, K. et al. Efficient quantum dot infrared solar cells with enhanced low-energy photon conversion via optical engineering. Nano Res. 16, 2392–2398 (2023). https://doi.org/10.1007/s12274-022-4906-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4906-1

Keywords

Navigation