Skip to main content
Log in

Regulation of artificial supramolecular transmembrane signal transduction by selenium-containing artificial enzyme receptors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Signal transduction across lipid bilayers is of profound importance in biological processes. In biological systems, natural enzymes mediate biochemical effects by binding to substrates and facilitating the conversion of external signals into physiological responses. Sequential transmission of biological signals from one enzyme to the next promotes signal transduction with feedforward and feedback mechanisms. Reconstructing these processes in an artificial system provides potential applications and offers a new way to understand fundamental biological processes in depth. However, the design of artificial signal transduction systems regulated by artificial enzyme receptors in a predictable and intelligent manner remains a challenge. Herein, benefiting from the polarity-regulated characteristics of Se-containing compounds with artificial glutathione peroxidase (GPx) activity, we constructed an artificial transmembrane signaling receptor with a Se-containing GPx-like recognition head group, a membrane-anchoring group, and a pre-enzyme end group. The artificial supramolecular signal transduction system containing such signal transduction receptors extends the range of signaling systems based on enzyme regulation, which provides a new way to study natural signal processes in cells and artificially regulated biological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singer, S. J. Intercellular communication and cell-cell adhesion. Science 1992, 255, 1671–1677.

    Article  CAS  Google Scholar 

  2. Laplante, M.; Sabatini, D. M. mTOR signaling in growth control and disease. Cell 2012, 149, 274–293.

    Article  CAS  Google Scholar 

  3. Kofuji, P.; Araque, A. G-protein-coupled receptors in astrocyteneuron communication. Neuroscience 2021, 456, 71–84.

    Article  CAS  Google Scholar 

  4. Natarajan, K.; McShan, A. C.; Jiang, J. S.; Kumirov, V. K.; Wang, R.; Zhao, H. Y.; Schuck, P.; Tilahun, M. E.; Boyd, L. F.; Ying, J. F. et al. An allosteric site in the T-cell receptor Cβ domain plays a critical signalling role. Nat. Commun. 2017, 8, 15260.

    Article  CAS  Google Scholar 

  5. Li, X.; Shen, B.; Yao, X. Q.; Yang, D. Synthetic chloride channel regulates cell membrane potentials and voltage-gated calcium channels. J. Am. Chem. Soc. 2009, 131, 13676–13680.

    Article  CAS  Google Scholar 

  6. Shetty, S. C.; Yandrapalli, N.; Pinkwart, K.; Krafft, D.; Vidakovic-Koch, T.; Ivanov, I.; Robinson, T. Directed signaling cascades in monodisperse artificial eukaryotic cells. ACS Nano 2021, 15, 15656–15666.

    Article  CAS  Google Scholar 

  7. Hindley, J. W.; Elani, Y.; McGilvery, C. M.; Ali, S.; Bevan, C. L.; Law, R. V.; Ces, O. Light-triggered enzymatic reactions in nested vesicle reactors. Nat. Commun. 2018, 9, 1093.

    Article  Google Scholar 

  8. Hindley, J. W.; Zheleva, D. G.; Elani, Y.; Charalambous, K.; Barter, L. M. C.; Booth, P. J.; Bevan, C. L.; Law, R. V.; Ces, O. Building a synthetic mechanosensitive signaling pathway in compartmentalized artificial cells. Proc. Natl. Acad. Sci. USA 2019, 116, 16711–16716.

    Article  CAS  Google Scholar 

  9. Li, P.; Xie, G. H.; Liu, P.; Kong, X. Y.; Song, Y. L.; Wen, L. P.; Jiang, L. Light-driven ATP transmembrane transport controlled by DNA nanomachines. J. Am. Chem. Soc. 2018, 140, 16048–16052.

    Article  CAS  Google Scholar 

  10. Tao, Y.; Chan, H. F.; Shi, B. Y.; Li, M. Q.; Leong, K. W. Light: A magical tool for controlled drug delivery. Adv. Funct. Mater. 2020, 30, 2005029.

    Article  CAS  Google Scholar 

  11. Bickerton, L. E.; Johnson, T. G.; Kerckhoffs, A.; Langton, M. J. Supramolecular chemistry in lipid bilayer membranes. Chem. Sci. 2021, 12, 11252–11274.

    Article  CAS  Google Scholar 

  12. Langton, M. J. Engineering of stimuli-responsive lipid-bilayer membranes using supramolecular systems. Nat. Rev. Chem. 2021, 5, 46–61.

    Article  CAS  Google Scholar 

  13. Cockroft, S. L. Membrane messengers. Nat. Chem. 2017, 9, 406–407.

    Article  CAS  Google Scholar 

  14. De Poli, M.; Zawodny, W.; Quinonero, O.; Lorch, M.; Webb, S. J.; Clayden, J. Conformational photoswitching of a synthetic peptide foldamer bound within a phospholipid bilayer. Science 2016, 352, 575–580.

    Article  CAS  Google Scholar 

  15. Lister, F. G. A.; Le Bailly, B. A. F.; Webb, S. J.; Clayden, J. Ligand-modulated conformational switching in a fully synthetic membrane-bound receptor. Nat. Chem. 2017, 9, 420–425.

    Article  CAS  Google Scholar 

  16. Langton, M. J.; Williams, N. H.; Hunter, C. A. Recognition-controlled membrane translocation for signal transduction across lipid bilayers. J. Am. Chem. Soc. 2017, 139, 6461–6466.

    Article  CAS  Google Scholar 

  17. Langton, M. J.; Scriven, L. M.; Williams, N. H.; Hunter, C. A. Triggered release from lipid bilayer vesicles by an artificial transmembrane signal transduction system. J. Am. Chem. Soc. 2017, 139, 15768–15773.

    Article  CAS  Google Scholar 

  18. Langton, M. J.; Keymeulen, F.; Ciaccia, M.; Williams, N. H.; Hunter, C. A. Controlled membrane translocation provides a mechanism for signal transduction and amplification. Nat. Chem. 2017, 9, 426–430.

    Article  CAS  Google Scholar 

  19. Ding, Y. D.; Williams, N. H.; Hunter, C. A. A synthetic vesicle-to-vesicle communication system. J. Am. Chem. Soc. 2019, 141, 17847–17853.

    Article  CAS  Google Scholar 

  20. Bravin, C.; Duindam, N.; Hunter, C. A. Artificial transmembrane signal transduction mediated by dynamic covalent chemistry. Chem. Sci. 2021, 12, 14059–14064.

    Article  CAS  Google Scholar 

  21. Trevisan, L.; Kocsis, I.; Hunter, C. A. Redox switching of an artificial transmembrane signal transduction system. Chem. Commun. 2021, 57, 2196–2198.

    Article  CAS  Google Scholar 

  22. Lingrel, J. B. The physiological significance of the cardiotonic steroid/ouabain-binding site of the Na, K-ATPase. Annu. Rev. Physiol. 2010, 72, 395–412.

    Article  CAS  Google Scholar 

  23. Li, Z. C.; Xie, Z. J. The Na/K-ATPase/Src complex and cardiotonic steroid-activated protein kinase cascades. Pflugers Arc. 2009, 457, 635–644.

    Article  CAS  Google Scholar 

  24. Tian, J.; Li, X.; Liang, M.; Liu, L. J.; Xie, J. X.; Ye, Q. Q.; Kometiani, P.; Tillekeratne, M.; Jin, R. M.; Xie, Z. J. Changes in sodium pump expression dictate the effects of ouabain on cell growth. J. Biol. Chem. 2009, 284, 14921–14929.

    Article  CAS  Google Scholar 

  25. Kometiani, P.; Liu, L. J.; Askari, A. Digitalis-induced signaling by Na+/K+-ATPase in human breast cancer cells. Mol. Pharmacol. 2005, 67, 929–936.

    Article  CAS  Google Scholar 

  26. Makihira, S.; Nikawa, H.; Kajiya, M.; Kawai, T.; Mine, Y.; Kosaka, E.; Silva, M. J. B.; Tobiume, K.; Terada, Y. Blocking of sodium and potassium ion-dependent adenosine triphosphatase-α1 with ouabain and vanadate suppresses cell-cell fusion during RANKL-mediated osteoclastogenesis. Eur. J. Pharmacol. 2011, 670, 409–418.

    Article  CAS  Google Scholar 

  27. Evgenov, O. V.; Pacher, P.; Schmidt, P. M.; Haskó, G.; Schmidt, H. H. H. W.; Stasch, J. P. NO-independent stimulators and activators of soluble guanylate cyclase: Discovery and therapeutic potential. Nat. Rev. Drug Discov. 2006, 5, 755–768.

    Article  CAS  Google Scholar 

  28. Derbyshire, E. R.; Marletta, M. A. Structure and regulation of soluble guanylate cyclase. Annu. Rev. Biochem. 2012, 81, 533–559.

    Article  CAS  Google Scholar 

  29. Murad, F. Nitric oxide and cyclic GMP in cell signaling and drug development. N. Engl. J. Med. 2006, 355, 2003–2011.

    Article  CAS  Google Scholar 

  30. Lubos, E.; Handy, D. E.; Loscalzo, J. Role of oxidative stress and nitric oxide in atherothrombosis. Front. Biosci. 2008, 13, 5323–5344.

    Article  CAS  Google Scholar 

  31. Liu, Y.; Pan, T. Z.; Fang, Y.; Ma, N. N.; Qiao, S. P.; Zhao, L. L.; Wang, R. D.; Wang, T. T.; Li, X. M.; Jiang, X. J. et al. Construction of smart glutathione S-transferase via remote optically controlled supramolecular switches. ACS Catal. 2017, 7, 6979–6983.

    Article  CAS  Google Scholar 

  32. Yin, Y. Z.; Jiao, S. F.; Lang, C.; Liu, J. Q. A supramolecular microgel glutathione peroxidase mimic with temperature responsive activity. Soft Matter 2014, 10, 3374–3385.

    Article  CAS  Google Scholar 

  33. Yin, Y. Z.; Jiao, S. F.; Lang, C.; Liu, J. Q. A smart artificial glutathione peroxidase with temperature responsive activity constructed by host-guest interaction and self-assembly. RSC Adv. 2014, 4, 25040–25050.

    Article  CAS  Google Scholar 

  34. Bhabak, K. P.; Mugesh, G. Amide-based glutathione peroxidase mimics: Effect of secondary and tertiary amide substituents on antioxidant activity. Chem.—Asian J. 2009, 4, 974–983.

    Article  CAS  Google Scholar 

  35. Zou, H. X.; Sun, H. C.; Wang, L.; Zhao, L. L.; Li, J. X.; Dong, Z. Y.; Luo, Q.; Xu, J. Y.; Liu, J. Q. Construction of a smart temperature-responsive GPx mimic based on the self-assembly of supraamphiphiles. Soft Matter 2016, 12, 1192–1199.

    Article  CAS  Google Scholar 

  36. Huang, Y. Y.; Su, E. Z.; Ren, J. S.; Qu, X. G. The recent biological applications of selenium-based nanomaterials. Nano Today 2021, 38, 101205.

    Article  CAS  Google Scholar 

  37. Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.

    Article  CAS  Google Scholar 

  38. Huang, Z. P.; Luo, Q.; Guan, S. W.; Gao, J. X.; Wang, Y. G.; Zhang, B.; Wang, L.; Xu, J. Y.; Dong, Z. Y.; Liu, J. Q. Redox control of GPx catalytic activity through mediating self-assembly of Fmocphenylalanine selenide into switchable supramolecular architectures. Soft Matter 2014, 10, 9695–9701.

    Article  CAS  Google Scholar 

  39. Ren, H. F.; Wu, Y. T.; Ma, N.; Xu, H. P.; Zhang, X. Side-chain selenium-containing amphiphilic block copolymers: Redox-controlled self-assembly and disassembly. Soft Matter 2012, 8, 1460–1466.

    Article  CAS  Google Scholar 

  40. Wu, Z. P.; Hilvert, D. Selenosubtilisin as a glutathione peroxidase mimic. J. Am. Chem. Soc. 1990, 112, 5647–5648.

    Article  CAS  Google Scholar 

  41. Dong, Z. Y.; Liu, J. Q.; Mao, S. Z.; Huang, X.; Yang, B.; Ren, X. J.; Luo, G. M.; Shen, J. C. Aryl thiol substrate 3-carboxy-4-nitrobenzenethiol strongly stimulating thiol peroxidase activity of glutathione peroxidase mimic 2, 2′-ditellurobis(2-deoxy-β-cyclodextrin). J. Am. Chem. Soc. 2004, 126, 16395–16404.

    Article  CAS  Google Scholar 

  42. Sun, H. C.; Miao, L.; Li, J. X.; Fu, S.; An, G.; Si, C. Y.; Dong, Z. Y.; Luo, Q.; Yu, S. J.; Xu, J. Y. et al. Self-assembly of cricoid proteins induced by “soft nanoparticles”: An approach to design multienzymecooperative antioxidative systems. ACS Nano 2015, 9, 5461–5469.

    Article  CAS  Google Scholar 

  43. Hou, J. X.; Jiang, X. J.; Yang, F. H.; Wang, L.; Yan, T. F.; Liu, S. D.; Xu, J. Y.; Hou, C. X.; Luo, Q.; Liu, J. Q. Supramolecularly regulated artificial transmembrane signal transduction for “ON/OFF”-switchable enzyme catalysis. Chem. Commun. 2022, 58, 5725–5728.

    Article  CAS  Google Scholar 

  44. Hayes, J. D.; McLellan, L. I. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic. Res. 1999, 31, 273–300.

    Article  CAS  Google Scholar 

  45. Hayes, J. D.; Flanagan, J. U.; Jowsey, I. R. Glutathione transferases. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 51–88.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Nos. 2020YFA0908500 and 2018YFA0901600), and the National Natural Science Foundation of China (No. 22161142015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tingting Wang or Junqiu Liu.

Electronic Supplementary Material

12274_2022_4814_MOESM1_ESM.pdf

Regulation of artificial supramolecular transmembrane signal transduction by selenium-containing artificial enzyme receptors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Xing, Y., Yan, T. et al. Regulation of artificial supramolecular transmembrane signal transduction by selenium-containing artificial enzyme receptors. Nano Res. 16, 964–969 (2023). https://doi.org/10.1007/s12274-022-4814-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4814-4

Keywords

Navigation