Skip to main content
Log in

Surface modification of MoS2 nanosheets by single Ni atom for ultrasensitive dopamine detection

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Single atom catalysts have been recognized as potential catalysts to fabricate electrochemical biosensors, due to their unexpected catalytic selectivity and activity. Here, we designed and fabricated an ultrasensitive dopamine (DA) sensor based on the flower-like MoS2 embellished with single Ni site catalyst (Ni-MoS2). The limit of detection could achieve 1 pM in phosphate buffer solution (PBS, pH=7.4), 1 pM in bovine serum (pH=7.4), and 100 pM in artificial urine (pH=6.8). The excellent sensing performance was attributed to the Ni single atom axial anchoring on the Mo atom in the MoS2 basal plane with the Ni-S3 structure. Both the experiment and density functional theory (DFT) results certify that this structural feature is more favorable for the adsorption and electron transfer of DA on Ni atoms. The high proportion of Ni active sites on MoS2 basal plane effectively enhanced the intrinsic electronic conductivity and electrochemical activity toward DA. The successful establishment of this sensor gives a new guide to expand the field of single atom catalyst in the application of biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Laviolette, S. R. Dopamine modulation of emotional processing in cortical and subcortical neural circuits: Evidence for a final common pathway in schizophrenia?. Schizophr. Bull. 2007, 33, 971–981.

    Article  Google Scholar 

  2. Piggott, M. A.; Marshall, E. F.; Thomas, N.; Lloyd, S.; Court, J. A.; Jaros, E.; Burn, D.; Johnson, M.; Perry, R. H.; McKeith, I. G. et al. Striatal dopaminergic markers in dementia with Lewy bodies, Alzheimer’s and Parkinson’s diseases: Rostrocaudal distribution. Brain 1999, 122, 1449–1468.

    Article  Google Scholar 

  3. Bird, E. D.; Spokes, E. G. S.; Iversen, L. L. Increased dopamine concentration in limbic areas of brain from patients dying with schizophrenia. Brain 1979, 102, 347–360.

    Article  CAS  Google Scholar 

  4. Sharman, D. F. The catabolism of catecholamines: Recent studies. Br. Med. Bull. 1973, 29, 110–115.

    Article  CAS  Google Scholar 

  5. Shukla, R. P.; Aroosh, M.; Matzafi, A.; Ben-Yoav, H. Partially functional electrode modifications for rapid detection of dopamine in urine. Adv. Funct. Mater. 2021, 31, 2004146.

    Article  CAS  Google Scholar 

  6. El-Beqqali, A.; Kussak, A.; Abdel-Rehim, M. Determination of dopamine and serotonin in human urine samples utilizing microextraction online with liquid chromatography/electrospray tandem mass spectrometry. J. Sep. Sci. 2007, 30, 421–424.

    Article  CAS  Google Scholar 

  7. Hows, M. E. P.; Organ, A. J.; Murray, S.; Dawson, L. A.; Foxton, R.; Heidbreder, C.; Hughes, Z. A.; Lacroix, L.; Shah, A. J. Highperformance liquid chromatography/tandem mass spectrometry assay for the rapid high sensitivity measurement of basal acetylcholine from microdialysates. J. Neurosci. Methods 2002, 121, 33–39.

    Article  CAS  Google Scholar 

  8. Huang, F.; Li, J.; Shi, H. L.; Wang, T. T.; Muhtar, W.; Du, M.; Zhang, B. B.; Wu, H.; Yang, L.; Hu, Z. B. et al. Simultaneous quantification of seven hippocampal neurotransmitters in depression mice by LC-MS/MS. J. Neurosci. Methods 2014, 229, 8–14.

    Article  CAS  Google Scholar 

  9. Wang, J.; Hu, Y. Y.; Zhou, Q.; Hu, L. Z.; Fu, W. S.; Wang, Y. Peroxidase-like activity of metal-organic framework [Cu(PDA)(DMF)] and its application for colorimetric detection of dopamine. ACS Appl. Mater. Interfaces 2019, 11, 44466–44473.

    Article  CAS  Google Scholar 

  10. Cesewski, E.; Johnson, B. N. Electrochemical biosensors for pathogen detection. Biosens. Bioelectron. 2020, 159, 112214.

    Article  CAS  Google Scholar 

  11. Qing, X.; Wang, Y. D.; Zhang, Y.; Ding, X. C.; Zhong, W. B.; Wang, D.; Wang, W. W.; Liu, Q. Z.; Liu, K.; Li, M. F. et al. Wearable fiber-based organic electrochemical transistors as a platform for highly sensitive dopamine monitoring. ACS Appl. Mater. Interfaces 2019, 11, 13105–13113.

    Article  CAS  Google Scholar 

  12. Sun, X. J.; Zhang, L.; Zhang, X. H.; Liu, X. X.; Jian, J.; Kong, D. C.; Zeng, D. C.; Yuan, H. M.; Feng, S. H. Electrochemical dopamine sensor based on superionic conducting potassium ferrite. Biosens. Bioelectron. 2020, 153, 112045.

    Article  CAS  Google Scholar 

  13. Zhong, R. B.; Tang, Q.; Wang, S. P.; Zhang, H. B.; Zhang, F.; Xiao, M. S.; Man, T. T.; Qu, X. M.; Li, L.; Zhang, W. J. et al. Self-assembly of enzyme-like nanofibrous G-molecular hydrogel for printed flexible electrochemical sensors. Adv. Mater. 2018, 30, 1706887.

    Article  Google Scholar 

  14. Bai, Y. C.; Zhang, W. D. Highly sensitive and selective determination of dopamine in the presence of ascorbic acid using Pt@Au/MWNTs modified electrode. Electroanalysis 2010, 22, 237–243.

    Article  CAS  Google Scholar 

  15. Patriarchi, T.; Mohebi, A.; Sun, J. Q.; Marley, A.; Liang, R. Q.; Dong, C. Y.; Puhger, K.; Mizuno, G. O.; Davis, C. M.; Wiltgen, B. et al. An expanded palette of dopamine sensors for multiplex imaging in vivo. Nat. Methods 2020, 17, 1147–1155.

    Article  CAS  Google Scholar 

  16. Qian, T.; Yu, C. F.; Zhou, X.; Wu, S. S.; Shen, J. Au nanoparticles decorated polypyrrole/reduced graphene oxide hybrid sheets for ultrasensitive dopamine detection. Sens. Actuat. B:Chem. 2014, 193, 759–763.

    Article  CAS  Google Scholar 

  17. Wen, M. Z.; Xing, Y.; Liu, G. Y.; Hou, S. L.; Hou, S. F. Electrochemical sensor based on Ti3C2 membrane doped with UIO-66-NH2 for dopamine. Mikrochim. Acta 2022, 189, 141.

    Article  CAS  Google Scholar 

  18. Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

    Article  CAS  Google Scholar 

  19. Zhou, H.; Zhao, Y. F.; Xu, J.; Sun, H. R.; Li, Z. J.; Liu, W.; Yuan, T. W.; Liu, W.; Wang, X. Q.; Cheong, W. C. et al. Recover the activity of sintered supported catalysts by nitrogen-doped carbon atomization. Nat. Commun. 2020, 11, 335.

    Article  CAS  Google Scholar 

  20. Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

    Article  CAS  Google Scholar 

  21. Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

    Article  CAS  Google Scholar 

  22. Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.

    Article  CAS  Google Scholar 

  23. Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

    Article  CAS  Google Scholar 

  24. Zhang, X. L.; Li, G. L.; Chen, G.; Wu, D.; Zhou, X. X.; Wu, Y. N. Single-atom nanozymes: A rising star for biosensing and biomedicine. Coord. Chem. Rev. 2020, 418, 213376.

    Article  CAS  Google Scholar 

  25. Wang, S.; Hu, Z. F.; Wei, Q. L.; Zhang, H. M.; Tang, W. N.; Sun, Y. Q.; Duan, H. Q.; Dai, Z. C.; Liu, Q. Y.; Zheng, X. W. Diatomic active sites nanozymes: Enhanced peroxidase-like activity for dopamine and intracellular H2O2 detection. Nano Res. 2022, 15, 4266–4273.

    Article  CAS  Google Scholar 

  26. Zhang, Q. Q.; Guan, J. Q. Applications of single-atom catalysts. Nano Res. 2021, 15, 38–70.

    Article  Google Scholar 

  27. Zhao, Y.; Yu, Y. P.; Gao, F.; Wang, Z. Y.; Chen, W. X.; Chen, C.; Yang, J.; Yao, Y. C.; Du, J. Y.; Zhao, C. et al. A highly accessible copper single-atom catalyst for wound antibacterial application. Nano Res. 2021, 14, 4808–4813.

    Article  CAS  Google Scholar 

  28. Zhu, D. M.; Ling, R. Y.; Chen, H.; Lyu, M.; Qian, H. S.; Wu, K. L.; Li, G. X.; Wang, X. W. Biomimetic copper single-atom nanozyme system for self-enhanced nanocatalytic tumor therapy. Nano Res. 2022, 15, 7320–7328.

    Article  CAS  Google Scholar 

  29. Barua, S.; Dutta, H. S.; Gogoi, S.; Devi, R.; Khan, R. Nanostructured MoS2-based advanced biosensors: A review. ACS Appl. Nano Mater. 2018, 1, 2–25.

    Article  CAS  Google Scholar 

  30. Lei, Y.; Butler, D.; Lucking, M. C.; Zhang, F.; Xia, T. N.; Fujisawa, K.; Granzier-Nakajima, T.; Cruz-Silva, R.; Endo, M.; Terrones, H. et al. Single-atom doping of MoS2 with manganese enables ultrasensitive detection of dopamine: Experimental and computational approach. Sci. Adv. 2020, 6, eabc4250.

    Article  CAS  Google Scholar 

  31. Liu, R.; Fei, H. L.; Ye, G. L. Recent advances in single metal atom-doped MoS2 as catalysts for hydrogen evolution reaction. Tungsten 2020, 2, 147–161.

    Article  Google Scholar 

  32. Wang, L. L.; Liu, X.; Luo, J. M.; Duan, X. D.; Crittenden, J.; Liu, C. B.; Zhang, S. Q.; Pei, Y.; Zeng, Y. X.; Duan, X. F. Self-optimization of the active site of molybdenum disulfide by an irreversible phase transition during photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2017, 56, 7610–7614.

    Article  CAS  Google Scholar 

  33. Wu, S. X.; Zeng, Z. Y.; He, Q. Y.; Wang, Z. J.; Wang, S. J.; Du, Y. P.; Yin, Z. Y.; Sun, X. P.; Chen, W.; Zhang, H. Electrochemically reduced single-layer MoS2 nanosheets: Characterization, properties, and sensing applications. Small 2012, 8, 2264–2270.

    Article  CAS  Google Scholar 

  34. Liu, M. M.; Li, H. X.; Liu, S. J.; Wang, L. L.; Xie, L. B.; Zhuang, Z. C.; Sun, C.; Wang, J.; Tang, M.; Sun, S. J. et al. Tailoring activation sites of metastable distorted 1T’-phase MoS2 by Ni doping for enhanced hydrogen evolution. Nano Res. 2022, 15, 5946–5952.

    Article  CAS  Google Scholar 

  35. Qi, K.; Cui, X. Q.; Gu, L.; Yu, S. S.; Fan, X. F.; Luo, M. C.; Xu, S.; Li, N. B.; Zheng, L. R.; Zhang, Q. H. et al. Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun. 2019, 10, 5231.

    Article  Google Scholar 

  36. Su, H. Y.; Chen, L. L.; Chen, Y. Z.; Si, R.; Wu, Y. T.; Wu, X. N.; Geng, Z. G.; Zhang, W. H.; Zeng, J. Single atoms of iron on MoS2 nanosheets for N2 electroreduction into ammonia. Angew. Chem., Int. Ed. 2020, 59, 20411–20416.

    Article  CAS  Google Scholar 

  37. Xie, X. L.; Wang, D. P.; Guo, C. X.; Liu, Y. H.; Rao, Q. H.; Lou, F. M.; Li, Q. N.; Dong, Y. Q.; Li, Q. F.; Yang, H. B. et al. Single-atom ruthenium biomimetic enzyme for simultaneous electrochemical detection of dopamine and uric acid. Anal. Chem. 2021, 93, 4916–4923.

    Article  CAS  Google Scholar 

  38. Xin, X.; Song, Y. R.; Guo, S. H.; Zhang, Y. Z.; Wang, B. L.; Wang, Y. J.; Li, X. H. One-step synthesis of P-doped MoS2 for efficient photocatalytic hydrogen production. J. Alloys Compd. 2020, 829, 154635.

    Article  CAS  Google Scholar 

  39. Gao, X. Q.; Qi, J.; Wan, S. H.; Zhang, W.; Wang, Q.; Cao, R. Conductive molybdenum sulfide for efficient electrocatalytic hydrogen evolution. Small 2018, 14, 1803361.

    Article  Google Scholar 

  40. Chen, J. Y.; Li, H.; Fan, C.; Meng, Q. W.; Tang, Y. W.; Qiu, X. Y.; Fu, G. T.; Ma, T. Y. Dual single-atomic Ni-N4 and Fe-N4 sites constructing Janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 2020, 32, 2003134.

    Article  CAS  Google Scholar 

  41. Ge, J. M.; Zhang, D. B.; Qin, Y.; Dou, T.; Jiang, M. H.; Zhang, F. Z.; Lei, X. D. Dual-metallic single Ru and Ni atoms decoration of MoS2 for high-efficiency hydrogen production. Appl. Catal. B: Environ. 2021, 298, 120557.

    Article  CAS  Google Scholar 

  42. Jian, J.; Li, H.; Sun, X. J.; Kong, D. C.; Zhang, X. H.; Zhang, L.; Yuan, H. M.; Feng, S. H. 1T-2H Crx-MoS2 ultrathin nanosheets for durable and enhanced hydrogen evolution reaction. ACS Sustainable Chem. Eng. 2019, 7, 7227–7232.

    Article  CAS  Google Scholar 

  43. Peng, J.; Liu, Y. H.; Luo, X.; Wu, J. J.; Lin, Y.; Guo, Y. Q.; Zhao, J. Y.; Wu, X. J.; Wu, C. Z.; Xie, Y. High phase purity of large-sized 1T’-MoS2 monolayers with 2D superconductivity. Adv. Mater. 2019, 31, 1900568.

    Article  Google Scholar 

  44. Luo, R. C.; Luo, M.; Wang, Z. Q.; Liu, P.; Song, S. X.; Wang, X. D.; Chen, M. W. The atomic origin of nickel-doping-induced catalytic enhancement in MoS2 for electrochemical hydrogen production. Nanoscale 2019, 11, 7123–7128.

    Article  CAS  Google Scholar 

  45. Wang, Q.; Zhao, Z. L.; Dong, S.; He, D. S.; Lawrence, M. J.; Han, S. B.; Cai, C.; Xiang, S. H.; Rodriguez, P.; Xiang, B. et al. Design of active nickel single-atom decorated MoS2 as a pH-universal catalyst for hydrogen evolution reaction. Nano Energy 2018, 53, 458–467.

    Article  CAS  Google Scholar 

  46. Xu, G. Y.; Jarjes, Z. A.; Desprez, V.; Kilmartin, P. A.; Travas-Sejdic, J. Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene. Biosens. Bioelectron. 2018, 107, 184–191.

    Article  CAS  Google Scholar 

  47. Palanisamy, S.; Ku, S. H.; Chen, S. M. Dopamine sensor based on a glassy carbon electrode modified with a reduced graphene oxide and palladium nanoparticles composite. Microchim. Acta 2013, 180, 1037–1042.

    Article  CAS  Google Scholar 

  48. Zhao, D. Y.; Yu, G. L.; Tian, K. L.; Xu, C. X. A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy. Biosens. Bioelectron. 2016, 82, 119–126.

    Article  CAS  Google Scholar 

  49. Gao, F.; Cai, X. L.; Wang, X.; Gao, C.; Liu, S. L.; Gao, F.; Wang, Q. X. Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode. Sens. Actuat. B:Chem. 2013, 186, 380–387.

    Article  CAS  Google Scholar 

  50. Yang, Y.; Li, M. X.; Zhu, Z. W. A novel electrochemical sensor based on carbon nanotubes array for selective detection of dopamine or uric acid. Talanta 2019, 201, 295–300.

    Article  CAS  Google Scholar 

  51. Anithaa, A. C.; Lavanya, N.; Asokan, K.; Sekar, C. WO3 nanoparticles based direct electrochemical dopamine sensor in the presence of ascorbic acid. Electrochim. Acta 2015, 167, 294–302.

    Article  CAS  Google Scholar 

  52. Sun, H. F.; Chao, J.; Zuo, X. L.; Su, S.; Liu, X. F.; Yuwen, L. H.; Fan, C. H.; Wang, L. H. Gold nanoparticle-decorated MoS2 nanosheets for simultaneous detection of ascorbic acid, dopamine and uric acid. RSC Adv. 2014, 4, 27625–27629.

    Article  CAS  Google Scholar 

  53. Zhao, Y. N.; Zhou, J.; Jia, Z. M.; Huo, D. Q.; Liu, Q. Y.; Zhong, D. Q.; Hu, Y.; Yang, M.; Bian, M. H.; Hou, C. J. In-situ growth of gold nanoparticles on a 3D-network consisting of a MoS2/rGO nanocomposite for simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid.. Mikrochim. Acta 2019, 186, 92.

    Article  Google Scholar 

  54. Pietrzyńska, M.; Voelkel, A. Stability of simulated body fluids such as blood plasma, artificial urine and artificial saliva. Microchem. J. 2017, 134, 197–201.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by China Ministry of Science and Technology (No. 2021YFA1500404), the Anhui Provincial Natural Science Foundation (Nos. 2108085QB70 and 2108085UD06), the DNL Cooperation Fund, CAS (No. DNL201918), the Collaborative Innovation Program of Hefei Science Center, CAS(No. 2021HSC-CIP002), the Natural Science Foundation of Hefei, China (No. 2021044), the Fundamental Research Funds for the Central Universities (Nos. WK2060000004, WK2060000021, WK2060000025, KY2060000180, and KY2060000195), and the Fundamental Research Funds for the Central Universities (No. WK5290000003). This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication. Thank the funding support from CAS Fujian Institute of Innovation. We acknowledge the Experimental Center of Engineering and Material Science in the University of Science and Technology of China. We thank the photoemission endstations BL1W1B in Beijing Synchrotron Radiation Facility (BSRF), BL14W1 in Shanghai Synchrotron Radiation Facility (SSRF), and BL10B and BL11U in National Synchrotron Radiation Laboratory (NSRL) for the help in characterizations. The DFT calculations in this work were performed at the Supercomputing Center of the University of Science and Technology of China. Special thanks go to the Instrumental Analysis Center of Shenzhen University (Lihu Campus).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoping Gao, Zhen-Qiang Yu or Yuen Wu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Chen, C., Xiong, C. et al. Surface modification of MoS2 nanosheets by single Ni atom for ultrasensitive dopamine detection. Nano Res. 16, 917–924 (2023). https://doi.org/10.1007/s12274-022-4802-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4802-8

Keywords

Navigation