Skip to main content
Log in

A highly ionic transference number eutectogel hybrid electrolytes based on spontaneous coupling inhibitor for solid-state lithium metal batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Polymer-based solid electrolytes have been extensively studied for solid-state lithium metal batteries to achieve high energy density and reliable security. But, its practical application is severely limited by low ionic conductivity and slow Li+ transference. Herein, based on the “binary electrolytes” of poly(vinylidene fluoride-chlorotrifluoroethylene) (P(VDF-CTFE)) and lithium salt (LiTFSI), a kind of eutectogel hybrid electrolytes (EHEs) with high Li+ transference number was developed via tuning the spontaneous coupling of charge and vacated space generated by Li-cation diffusion utilizing the Li6.4La3Zr1.4Ta0.6O12 (LLZTO) dopant. LLZTO doping promotes the dissociation of lithium salt, increases Li+ carrier density, and boosts ion jumping and the coordination/decoupling reactions of Li+. As a result, the optimized EHEs-10% possess a high Li-transference number of 0.86 and a high Li+ conductivity of 3.2×10−4 S·cm−1 at room temperature. Moreover, the prepared EHEs-10% composite solid electrolyte presents excellent lithiumphilic and compatibility, and can be tested stably for 1,200 h at 0.3 mA·cm−2 with assembled lithium symmetric batteries. Likewise, the EHEs-10% films match well with high-loading LiFePO4 and LiCoO2 cathodes (> 10 mg·cm−2) and exhibit remarkable interface stability. Particularly, the LiFePO4//EHEs-10%//Li and LiCoO2//EHEs-10%//Li cells deliver high rate performance of 118 mA·hg−1 at 1 C and 93.7 mAh·g−1 at 2 C with coulombic efficiency of 99.3% and 98.1%, respectively. This work provides an in-depth understanding and new insights into our design for polymer electrolytes with fast Li+ diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, Y.; Wang, L.; Zhou, Y. N.; Liang, Z.; Tavajohi, N.; Li, B. H.; Li, T. Solid polymer electrolytes with high conductivity and transference number of Li ions for Li-based rechargeable batteries. Adv. Sci. 2021, 8, 2003675.

    Article  CAS  Google Scholar 

  2. Wang, J. R.; Li, S. Q.; Zhao, Q.; Song, C.; Xue, Z. G. Structure code for advanced polymer electrolyte in lithium-ion batteries. Adv. Funct. Mater. 2021, 31, 2008208.

    Article  CAS  Google Scholar 

  3. Wang, S. Z.; Wang, Y.; Song, Y. C.; Jia, X. H.; Yang, J.; Li, Y.; Liao, J. X.; Song, H. J. Immobilizing polysulfide via multiple active sites in W18O49 for Li-S batteries by oxygen vacancy engineering. Energy Storage Mater. 2021, 43, 422–429.

    Article  Google Scholar 

  4. Wang, S. Z.; Liao, J. X.; Yang, X. F.; Liang, J. N.; Sun, Q.; Liang, J. W.; Zhao, F. P.; Koo, A.; Kong, F. P.; Yao, Y. et al. Designing a highly efficient polysulfide conversion catalyst with paramontroseite for high-performance and long-life lithium-sulfur batteries. Nano Energy 2019, 57, 230–240.

    Article  CAS  Google Scholar 

  5. Wang, S. Z.; Feng, S. P.; Liang, J. W.; Su, Q. M.; Zhao, F. P.; Song, H. J.; Zheng, M.; Sun, Q.; Song, Z. X.; Jia, X. H. et al. Insight into MoS2-MoN heterostructure to accelerate polysulfide conversion toward high-energy-density lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2003314.

    Article  CAS  Google Scholar 

  6. Lu, L. J.; Ding, W. Q.; Liu, J. Q.; Yang, B. Flexible PVDF based piezoelectric nanogenerators. Nano Energy 2020, 78, 105251.

    Article  CAS  Google Scholar 

  7. Sun, N.; Liu, Q. S.; Cao, Y.; Lou, S. F.; Ge, M. Y.; Xiao, X. H.; Lee, W. K.; Gao, Y. Z.; Yin, G. P.; Wang, J. J. et al. Anisotropically electrochemical-mechanical evolution in solid-state batteries and interfacial tailored strategy. Angew. Chem., Int. Ed. 2019, 58, 18647–18653.

    Article  CAS  Google Scholar 

  8. Wang, L. G.; Dai, A.; Xu, W. Q.; Lee, S.; Cha, W.; Harder, R.; Liu, T. C.; Ren, Y.; Yin, G. P.; Zuo, P. J. et al. Structural distortion induced by manganese activation in a lithium-rich layered cathode. J. Am. Chem. Soc. 2020, 142, 14966–14973.

    Article  CAS  Google Scholar 

  9. Yu, X. W.; Manthiram, A. A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Mater. 2021, 34, 282–300.

    Article  Google Scholar 

  10. Choo, Y.; Halat, D. M.; Villaluenga, I.; Timachova, K.; Balsara, N. P. Diffusion and migration in polymer electrolytes. Prog. Polym. Sci. 2020, 103, 101220.

    Article  CAS  Google Scholar 

  11. Lou, S. F.; Liu, Q. W.; Zhang, F.; Liu, Q. S.; Yu, Z. J.; Mu, T. S.; Zhao, Y.; Borovilas, J.; Chen, Y. J.; Ge, M. Y. et al. Insights into interfacial effect and local lithium-ion transport in polycrystalline cathodes of solid-state batteries. Nat. Commun. 2020, 11, 5700.

    Article  CAS  Google Scholar 

  12. Wang, S. Z.; Wang, Y.; Song, Y. C.; Zhang, J. T.; Jia, X. H.; Yang, J.; Shao, D.; Li, Y.; Liao, J. X.; Song, H. J. Synergistic regulating of dynamic trajectory and lithiophilic nucleation by Heusler alloy for dendrite-free Li deposition. Energy Storage Mater. 2022, 50, 505–513.

    Article  Google Scholar 

  13. Tang, S.; Guo, W.; Fu, Y. Z. Advances in composite polymer electrolytes for lithium batteries and beyond. Adv. Energy Mater. 2021, 11, 2000802.

    Article  CAS  Google Scholar 

  14. Zhang, F.; Lou, S. F.; Li, S.; Yu, Z. J.; Liu, Q. S.; Dai, A.; Cao, C. T.; Toney, M. F.; Ge, M. Y.; Xiao, X. H. et al. Surface regulation enables high stability of single-crystal lithium-ion cathodes at high voltage. Nat. Commun. 2020, 11, 3050.

    Article  CAS  Google Scholar 

  15. Payandeh, S.; Strauss, F.; Mazilkin, A.; Kondrakov, A.; Brezesinski, T. Tailoring the LiNbO3 coating of Ni-rich cathode materials for stable and high-performance all-solid-state batteries. Nano Res. Energy 2022, DOI: https://doi.org/10.26599/NRE.2022.9120016.

  16. Doyle, M.; Fuller, T. F.; Newman, J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J. Electrochem. Soc. 1993, 140, 1526–1533.

    Article  CAS  Google Scholar 

  17. Lou, S. F.; Yu, Z. J.; Liu, Q. S.; Wang, H.; Chen, M.; Wang, J. J. Multi-scale imaging of solid-state battery interfaces: From atomic scale to macroscopic scale. Chem 2020, 6, 2199–2218.

    Article  CAS  Google Scholar 

  18. Wu, Y. X.; Li, Y.; Wang, Y.; Liu, Q.; Chen, Q. G.; Chen, M. H. Advances and prospects of PVDF based polymer electrolytes. J. Energy Chem. 2022, 64, 62–84.

    Article  CAS  Google Scholar 

  19. Chen, G. H.; Zhang, F.; Zhou, Z. M.; Li, J. R.; Tang, Y. B. A flexible dual-ion battery based on PVDF-HFP-modified gel polymer electrolyte with excellent cycling performance and superior rate capability. Adv. Energy Mater. 2018, 8, 1801219.

    Article  Google Scholar 

  20. Wang, L. J.; Wang, Z. H.; Sun, Y.; Liang, X.; Xiang, H. F. Sb2O3 modified PVDF-CTFE electrospun fibrous membrane as a safe lithium-ion battery separator. J. Membr. Sci. 2019, 572, 512–519.

    Article  CAS  Google Scholar 

  21. Liu, Q.; Geng, Z.; Han, C. P.; Fu, Y. Z.; Li, S.; He, Y. B.; Kang, F. Y.; Li, B. H. Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries. J. Power Sources 2018, 389, 120–134.

    Article  CAS  Google Scholar 

  22. Zhao, N.; Khokhar, W.; Bi, Z. J.; Shi, C.; Guo, X. X.; Fan, L. Z.; Nan, C. W. Solid garnet batteries. Joule 2019, 3, 1190–1199.

    Article  CAS  Google Scholar 

  23. Chen, S. J.; Zhang, J. X.; Nie, L.; Hu, X. C.; Huang, Y. Q.; Yu, Y.; Liu, W. All-solid-state batteries with a limited lithium metal anode at room temperature using a garnet-based electrolyte. Adv. Mater. 2021, 33, 2002325.

    Article  CAS  Google Scholar 

  24. Huo, H. Y.; Luo, J.; Thangadurai, V.; Guo, X. X.; Nan, C. W.; Sun, X. L. Li2CO3: A critical issue for developing solid garnet batteries. ACS Energy Lett. 2020, 5, 252–262.

    Article  CAS  Google Scholar 

  25. Ma, C.; Rangasamy, E.; Liang, C. D.; Sakamoto, J.; More, K. L.; Chi, M. F. Excellent stability of a lithium-ion-conducting solid electrolyte upon reversible Li+/H+ exchange in aqueous solutions. Angew. Chem., Int. Ed. 2015, 54, 129–133.

    Article  CAS  Google Scholar 

  26. Truong, L.; Thangadurai, V. Soft-chemistry of garnet-type Li5+xBaxLa3−xNb2O12 (x = 0, 0.5, 1): Reversible H+ ↔ Li+ ionexchange reaction and their X-ray, 7Li MAS NMR, IR, and AC impedance spectroscopy characterization. Chem. Mater. 2011, 23, 3970–3977.

    Article  CAS  Google Scholar 

  27. Lou, S. F.; Zhang, F.; Fu, C. K.; Chen, M.; Ma, Y. L.; Yin, G. P.; Wang, J. J. Interface issues and challenges in all-solid-state batteries: Lithium, sodium, and beyond. Adv. Mater. 2021, 33, 2000721.

    Article  CAS  Google Scholar 

  28. Sharafi, A.; Yu, S.; Naguib, M.; Lee, M.; Ma, C.; Meyer, H. M.; Nanda, J.; Chi, M. F.; Siegel, D. J.; Sakamoto, J. Impact of air exposure and surface chemistry on Li-Li7La3Zr2O12 interfacial resistance. J. Mater. Chem. A 2017, 5, 13475–13487.

    Article  CAS  Google Scholar 

  29. Wang, Z. Q.; Li, X. Y.; Chen, Y. M.; Pei, K.; Mai, Y. W.; Zhang, S. L.; Li, J. Creep-enabled 3D solid-state lithium-metal battery. Chem 2020, 6, 2878–2892.

    Article  CAS  Google Scholar 

  30. Li, R. G.; Wu, D. B.; Yu, L.; Mei, Y. N.; Wang, L. B.; Li, H.; Hu, X. L. Unitized configuration design of thermally stable composite polymer electrolyte for lithium batteries capable of working over a wide range of temperatures. Adv. Eng. Mater. 2019, 21, 1900055.

    Article  Google Scholar 

  31. Zhang, X.; Liu, T.; Zhang, S. F.; Huang, X.; Xu, B. Q.; Lin, Y. H.; Xu, B.; Li, L. L.; Nan, C. W.; Shen, Y. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. A. Am. Chem. Soc. 2017, 139, 13779–13785.

    Article  CAS  Google Scholar 

  32. Murugan, R.; Thangadurai, V.; Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem., Int. Ed. 2007, 46, 7778–7781.

    Article  CAS  Google Scholar 

  33. Shen, X.; Zhang, Q.; Ning, T.; Liu, T.; Luo, Y.; He, X.; Luo, Z.; Lu, A. Critical challenges and progress of solid garnet electrolytes for all-solid-state batteries. Mater. Today Chem. 2020, 18, 100368.

    Article  CAS  Google Scholar 

  34. Huo, H. Y.; Chen, Y.; Li, R. Y.; Zhao, N.; Luo, J.; da Silva, J. G. P.; Mücke, R.; Kaghazchi, P.; Guo, X. X.; Sun, X. L. Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries. Energy Environ. Sci. 2020, 13, 127–134.

    Article  CAS  Google Scholar 

  35. Zha, W. P.; Chen, F.; Yang, D. J.; Shen, Q.; Zhang, L. M. Highperformance Li64La3Zr1.4Ta0.6O12/poly(ethylene oxide)/Succinonitrile composite electrolyte for solid-state lithium batteries. J. Power Sources 2018, 397, 87–94.

    Article  CAS  Google Scholar 

  36. Thangadurai, V.; Narayanan, S.; Pinzaru, D. Garnet-type solid-state fast Li ion conductors for Li batteries: Critical review. Chem. Soc. Rev. 2014, 43, 4714–4727.

    Article  CAS  Google Scholar 

  37. Diederichsen, K. M.; McShane, E. J.; McCloskey, B. D. Promising routes to a high Li+ transference number electrolyte for lithium ion batteries. ACS Energy Lett. 2017, 2, 2563–2575.

    Article  CAS  Google Scholar 

  38. Yadav, P. J. P.; Maiti, B.; Ghorai, B. K.; Sastry, P. U.; Patra, A. K.; Aswal, V. K.; Maiti, P. Thermoreversible gelation of poly(vinylidene fluoride-co-chlorotrifluoroethylene): Structure, morphology, thermodynamics, and theoretical prediction. Macromolecules 2011, 44, 3029–3038.

    Article  CAS  Google Scholar 

  39. Zheng, L. B.; Wang, J.; Yu, D. W.; Zhang, Y.; Wei, Y. S. Preparation of PVDF-CTFE hydrophobic membrane by non-solvent induced phase inversion: Relation between polymorphism and phase inversion. J. Membr. Sci. 2018, 550, 480–491.

    Article  CAS  Google Scholar 

  40. Zheng, L. B.; Wang, J.; Wu, Z. J.; Li, J.; Zhang, Y.; Yang, M.; Wei, Y. S. Preparation of interconnected biomimetic poly(vinylidene fluoride-co-chlorotrifluoroethylene) hydrophobic membrane by tuning the two-stage phase inversion process. ACS Appl. Mater. Interfaces 2016, 8, 32604–32615.

    Article  CAS  Google Scholar 

  41. Huang, Y. F.; Xu, J. Z.; Soulestin, T.; Dos Santos, F. D.; Li, R. P.; Fukuto, M.; Lei, J.; Zhong, G. J.; Li, Z. M.; Li, Y. et al. Can relaxor ferroelectric behavior Be realized for Poly(vinylidene fluoride-co-chlorotrifluoroethylene) [P(VDF-CTFE)] random copolymers by inclusion of CTFE units in PVDF crystals? Macromolecules 2018, 51, 5460–5472.

    Article  CAS  Google Scholar 

  42. Salimi, A.; Yousefi, A. A. FTIR studies of β-phase crystal formation in stretched PVDF films. Polym. Test. 2003, 22, 699–704.

    Article  CAS  Google Scholar 

  43. Cai, X. M.; Lei, T. P.; Sun, D. H.; Lin, L. W. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 2017, 7, 15382–15389.

    Article  CAS  Google Scholar 

  44. Zhang, X.; Han, J.; Niu, X. F.; Xin, C. Z.; Xue, C. J.; Wang, S.; Shen, Y.; Zhang, L.; Li, L. L.; Nan, C. W. High cycling stability for solid-state Li metal batteries via regulating solvation effect in poly(vinylidene fluoride)-based electrolytes. Batter Supercaps 2020, 3, 876–883.

    Article  CAS  Google Scholar 

  45. Ma, R. H.; Lu, X. L.; Kong, X.; Zheng, S. Y.; Zhang, S. Z.; Liu, S. H. A method of controllable positive-charged modification of PVDF-CTFE membrane surface based on C-Cl active site. J. Membr. Sci. 2021, 620, 118936.

    Article  CAS  Google Scholar 

  46. Zhang, S. Z.; Liang, T. B.; Wang, D. H.; Xu, Y. J.; Cui, Y. L.; Li, J. R.; Wang, X. L.; Xia, X. H.; Gu, C. D.; Tu, J. P. A stretchable and safe polymer electrolyte with a protecting-layer strategy for solidstate lithium metal batteries. Adv. Sci. 2021, 8, 2003241.

    Article  CAS  Google Scholar 

  47. Xu, B. Y.; Li, X. Y.; Yang, C.; Li, Y. T.; Grundish, N. S.; Chien, P. H.; Dong, K.; Manke, I.; Fang, R. Y.; Wu, N. et al. Interfacial chemistry enables stable cycling of all-solid-state Li metal batteries at high current densities. J. Am. Chem. Soc. 2021, 143, 6542–6550.

    Article  CAS  Google Scholar 

  48. Xue, C. J.; Guan, S. D.; Hu, B. K.; Wang, X. Z.; Xin, C. Z.; Liu, S. J.; Yu, J. Y.; Wen, K. H.; Li, L. L.; Nan, C. W. Significantly improved interface between PVDF-based polymer electrolyte and lithium metal via thermal-electrochemical treatment. Energy Storage Mater. 2022, 46, 452–460.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the International Cooperation Projects of Sichuan Provincial Department of Science and Technology (No. 2021YFH0126) and Quzhou Science and Technology Bureau Project (No. 2021D006), and the Fundamental Research Funds for the Central Universities (No. A030202063008029). The China Postdoctoral Science Foundation (Nos. 2021T140433, 2020M683408) and the Natural Science Foundation of Shaanxi Province (No. 2021JQ-538). The authors would like to thank Qian Fu from shiyanjia Lab (https://www.shiyanjia.com) for support of XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sizhe Wang or Jiaxuan Liao.

Electronic Supplementary Material

12274_2022_4759_MOESM1_ESM.pdf

A highly ionic transference number eutectogel hybrid electrolytes based on spontaneous coupling inhibitor for solid-state lithium metal batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, L., Wei, X., Qiu, Y. et al. A highly ionic transference number eutectogel hybrid electrolytes based on spontaneous coupling inhibitor for solid-state lithium metal batteries. Nano Res. 16, 1717–1725 (2023). https://doi.org/10.1007/s12274-022-4759-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4759-7

Keywords

Navigation