Skip to main content
Log in

Photocatalytic water splitting on BiVO4: Balanced charge-carrier consumption and selective redox reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Surficial redox reactions play an essential role in photocatalytic water splitting, and are closely related to the surface properties of a specific photocatalyst. In this work, using monoclinic BiVO4 decahedral single crystals as a model photocatalyst, we report on the interrelationship between the photocatalytic activity and the surficial reaction sites for charge-carrier consumption. By controlled hydrothermal synthesis, the ratio of {010} to {110} facets on BiVO4, which respectively serve as reductive and oxidative sites, is carefully tailored. Our results show that superior photocatalytic water oxidation could be obtained on BiVO4 decahedrons with a medium ratio of reductive/oxidative sites and that efficient overall water splitting could be achieved via further modification of appropriate cocatalysts in Z-scheme system. The excellent photocatalytic performance is attributed to the accelerated selective redox reactions by realizing balanced charge-carrier consumption, which provides insightful guidance for prospering photocatalytic reactions in energy conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tachibana, Y.; Vayssieres, L.; Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nat. Photonics 2012, 6, 511–518.

    CAS  Google Scholar 

  2. Wang, Q.; Domen, K. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev. 2020, 120, 919–985.

    CAS  Google Scholar 

  3. Song, H.; Luo, S. Q.; Huang, H. M.; Deng, B. W.; Ye, J. H. Solar-driven hydrogen production: Recent advances, challenges, and future perspectives. ACS Energy Lett. 2022, 7, 1043–1065.

    CAS  Google Scholar 

  4. Zhang, J. N.; Hu, W. P.; Cao, S.; Piao, L. Y. Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting. Nano Res. 2020, 13, 2313–2322.

    CAS  Google Scholar 

  5. Su, J. Z.; Vayssieres, L. A place in the sun for artificial photosynthesis?. ACS Energy Lett. 2016, 1, 121–135.

    CAS  Google Scholar 

  6. Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.

    CAS  Google Scholar 

  7. Zhao, D. M.; Wang, Y. Q.; Dong, C. L.; Huang, Y. C.; Chen, J.; Xue, F.; Shen, S. H.; Guo, L. J. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat. Energy 2021, 6, 388–397.

    CAS  Google Scholar 

  8. Qi, Y.; Zhang, J. W.; Kong, Y.; Zhao, Y.; Chen, S. S.; Li, D.; Liu, W.; Chen, Y. F.; Xie, T. F.; Cui, J. Y. et al. Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting. Nat. Commun. 2022, 13, 484.

    CAS  Google Scholar 

  9. Wang, Z.; Inoue, Y.; Hisatomi, T.; Ishikawa, R.; Wang, Q.; Takata, T.; Chen, S. S.; Shibata, N.; Ikuhara, Y.; Domen, K. Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. Nat. Catal. 2018, 1, 756–763.

    CAS  Google Scholar 

  10. Wang, Q.; Hisatomi, T.; Jia, Q. X.; Tokudome, H.; Zhong, M.; Wang, C. Z.; Pan, Z. H.; Takata, T.; Nakabayashi, M.; Shibata, N. et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 2016, 15, 611–615.

    CAS  Google Scholar 

  11. Guan, X. J.; Chowdhury, F. A.; Wang, Y. J.; Pant, N.; Vanka, S.; Trudeau, M. L.; Guo, L. J.; Vayssieres, L.; Mi, Z. T. Making of an industry-friendly artificial photosynthesis device. ACS Energy Lett. 2018, 3, 2230–2231.

    CAS  Google Scholar 

  12. Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974.

    CAS  Google Scholar 

  13. Takata, T.; Jiang, J. Z.; Sakata, Y.; Nakabayashi, M.; Shibata, N.; Nandal, V.; Seki, K.; Hisatomi, T.; Domen, K. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 2020, 581, 411–414.

    CAS  Google Scholar 

  14. Guan, X. J.; Chowdhury, F. A.; Pant, N.; Guo, L. J.; Vayssieres, L.; Mi, Z. T. Efficient unassisted overall photocatalytic seawater splitting on GaN-based nanowire arrays. J. Phys. Chem. C 2018, 122, 13797–13802.

    CAS  Google Scholar 

  15. Guo, L. J.; Chen, Y. B.; Su, J. Z.; Liu, M. C.; Liu, Y. Obstacles of solar-powered photocatalytic water splitting for hydrogen production: A perspective from energy flow and mass flow. Energy 2019, 172, 1079–1086.

    CAS  Google Scholar 

  16. Marschall, R. Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv. Funct. Mater. 2014, 24, 2421–2440.

    CAS  Google Scholar 

  17. Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z. X.; Tang, J. W. Visible-light driven heterojunction photocatalysts for water splittinga critical review. Energy Environ. Sci. 2015, 8, 731–759.

    CAS  Google Scholar 

  18. Ide, Y.; Inami, N.; Hattori, H.; Saito, K.; Sohmiya, M.; Tsunoji, N.; Komaguchi, K.; Sano, T.; Bando, Y.; Golberg, D. et al. Remarkable charge separation and photocatalytic efficiency enhancement through interconnection of TiO2 nanoparticles by hydrothermal treatment. Angew. Chem., Int. Ed. 2016, 55, 3600–3605.

    CAS  Google Scholar 

  19. Zhao, D. M.; Guan, X. J.; Shen, S. H. Design of polymeric carbon nitride-based heterojunctions for photocatalytic water splitting: A review. Environ. Chem. Lett., in press, https://doi.org/10.1007/s10311-022-01429-6.

  20. Meng, J. Z.; Duan, Y. Y.; Jing, S. J.; Ma, J. P.; Wang, K. W.; Zhou, K.; Ban, C. G.; Wang, Y.; Hu, B. H.; Yu, D. M. et al. Facet junction of BiOBr nanosheets boosting spatial charge separation for CO2 photoreduction. Nano Energy 2022, 92, 106671.

    CAS  Google Scholar 

  21. Deng, Y. T.; Zhou, H. P.; Zhao, Y.; Yang, B.; Shi, M.; Tao, X. P.; Yang, S. Q.; Li, R. G.; Li, C. Spatial separation of photogenerated charges on well-defined bismuth vanadate square nanocrystals. Small 2022, 18, 2103245.

    CAS  Google Scholar 

  22. Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638–641.

    CAS  Google Scholar 

  23. Han, X. G.; Kuang, Q.; Jin, M. S.; Xie, Z. X.; Zheng, L. S. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 2009, 131, 3152–3153.

    CAS  Google Scholar 

  24. Bi, Y. P.; Ouyang, S. X.; Umezawa, N.; Cao, J. Y.; Ye, J. H. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties. J. Am. Chem. Soc. 2011, 133, 6490–6492.

    CAS  Google Scholar 

  25. Li, R. G.; Zhang, F. X.; Wang, D. E.; Yang, J. X.; Li, M. R.; Zhu, J.; Zhou, X.; Han, H. X.; Li, C. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nat. Commun. 2013, 4, 1432.

    Google Scholar 

  26. Liu, G.; Yu, J. C.; Lu, G. Q.; Cheng, H. M. Crystal facet engineering of semiconductor photocatalysts: Motivations, advances and unique properties. Chem. Commun. 2011, 47, 6763–6783.

    CAS  Google Scholar 

  27. Zhong, Y. Q.; Wang, R.; Chen, J. H.; Duan, C.; Huang, Z. Y.; Yu, S.; Guo, H.; Zhou, Y. Surface-terminated hydroxyl groups for deciphering the facet-dependent photocatalysis of anatase TiO2. ACS Appl. Mater. Interfaces 2022, 14, 17601–17609.

    CAS  Google Scholar 

  28. Wang, B.; Shen, S. H.; Guo, L. J. SrTiO3 single crystals enclosed with high-indexed {023} facets and {001} facets for photocatalytic hydrogen and oxygen evolution. Appl. Catal. B 2015, 166–167, 320–326.

    Google Scholar 

  29. Xi, G. C.; Ye, J. H. Synthesis of bismuth vanadate nanoplates with exposed {001} facets and enhanced visible-light photocatalytic properties. Chem. Commun. 2010, 46, 1893–1895.

    CAS  Google Scholar 

  30. Wang, D. G.; Jiang, H. F.; Zong, X.; Xu, Q.; Ma, Y.; Li, G. L.; Li, C. Crystal facet dependence of water oxidation on BiVO4 sheets under visible light irradiation. Chem.—Eur. J. 2011, 17, 1275–1282.

    CAS  Google Scholar 

  31. Cheng, C.; Mao, L. H.; Shi, J. W.; Xue, F.; Zong, S. C.; Zheng, B. T.; Guo, L. J. NiCo2O4 nanosheets as a novel oxygen-evolution-reaction cocatalyst in situ bonded on the g-C3N4 photocatalyst for excellent overall water splitting. J. Mater. Chem. A 2021, 9, 12299–12306.

    CAS  Google Scholar 

  32. Zhang, X. W.; Li, Z.; Ta, N.; Han, H. X. Unique properties of RhCrOx cocatalyst regulating reactive oxygen species formation in photocatalytic overall water splitting. ACS Sustainable Chem. Eng. 2022, 10, 4059–4064.

    CAS  Google Scholar 

  33. Maeda, K.; Teramura, K.; Lu, D. L.; Saito, N.; Inoue, Y.; Domen, K. Domen K. Roles of Rh/Cr2O3 (core/shell) nanoparticles photodeposited on visible-light-responsive (Ga1−xZnx)(N1−xOx) solid solutions in photocatalytic overall water splitting. J. Phys. Chem. C 2007, 111, 7554–7560.

    CAS  Google Scholar 

  34. Suzuki, H.; Nitta, S.; Tomita, O.; Higashi, M.; Abe, R. Highly dispersed RuO2 hydrates prepared via simple adsorption as efficient cocatalysts for visible-light-driven Z-scheme water splitting with an IO3/I redox mediator. ACS Catal. 2017, 7, 4336–4343.

    CAS  Google Scholar 

  35. Suzuki, H.; Tomita, O.; Higashi, M.; Abe, R. Two-step photocatalytic water splitting into H2 and O2 using layered metal oxide KCa2Nb3O10 and its derivatives as O2-evolving photocatalysts with IO3/I or Fe3+/Fe2+ redox mediator. Catal. Sci. Technol. 2015, 5, 2640–2648.

    CAS  Google Scholar 

  36. Qi, Y.; Chen, S. S.; Cui, J. Y.; Wang, Z. L.; Zhang, F. X.; Li, C. Inhibiting competing reactions of iodate/iodide redox mediators by surface modification of photocatalysts to enable Z-scheme overall water splitting. Appl. Catal. B 2018, 224, 579–585.

    CAS  Google Scholar 

  37. Kato, H.; Sasaki, Y.; Shirakura, N.; Kudo, A. Synthesis of highly active rhodium-doped SrTiO3 powders in Z-scheme systems for visible-light-driven photocatalytic overall water splitting. J. Mater. Chem. A 2013, 1, 12327–12333.

    CAS  Google Scholar 

  38. Li, N. X.; Liu, M. C.; Zhou, Z. H.; Zhou, J. C.; Sun, Y. M.; Guo, L. J. Charge separation in facet-engineered chalcogenide photocatalyst: A selective photocorrosion approach. Nanoscale 2014, 6, 9695–9702.

    CAS  Google Scholar 

  39. Zong, S. C.; Tian, L.; Guan, X. J.; Cheng, C.; Shi, J. W.; Guo, L. J. Photocatalytic overall water splitting without noble-metal: Decorating CoP on Al-doped SrTiO3. J. Colloid Interface Sci. 2022, 606, 491–499.

    CAS  Google Scholar 

  40. Pan, Z. M.; Zheng, Y.; Guo, F. S.; Niu, P. P.; Wang, X. C. Decorating CoP and Pt nanoparticles on graphitic carbon nitride nanosheets to promote overall water splitting by conjugated polymers. ChemSusChem 2017, 10, 87–90.

    CAS  Google Scholar 

  41. Lu, C.; Zhang, C.; Wang, P.; Zhao, Y.; Yang, Y.; Wang, Y. J.; Yuan, H. F.; Qu, S. L.; Zhang, X. B.; Song, G. S. Light-free generation of singlet oxygen through manganese-thiophene nanosystems for pH-responsive chemiluminescence imaging and tumor therapy. Chem 2020, 6, 2314–2334.

    CAS  Google Scholar 

  42. Hu, J. Q.; He, H. C.; Li, L.; Zhou, X.; Li, Z. S.; Shen, Q.; Wu, C. P.; Asiri, A. M.; Zhou, Y.; Zou, Z. G. Highly symmetrical, 24-faceted, concave BiVO4 polyhedron bounded by multiple high-index facets for prominent photocatalytic O2 evolution under visible light. Chem. Commun. 2019, 55, 4777–4780.

    CAS  Google Scholar 

  43. Li, P.; Chen, X. Y.; He, H. C.; Zhou, X.; Zhou, Y.; Zou, Z. G. Polyhedral 30-faceted BiVO4 microcrystals predominantly enclosed by high-index planes promoting photocatalytic water-splitting activity. Adv. Mater. 2018, 30, 1703119.

    Google Scholar 

  44. Tan, H. L.; Wen, X. M.; Amal, R.; Ng, Y. H. BiVO4 {010} and {110} relative exposure extent: Governing factor of surface charge population and photocatalytic activity. J. Phys. Chem. Lett. 2016, 7, 1400–1405.

    CAS  Google Scholar 

  45. Wang, M. L.; Xu, S.; Zhou, Z. H.; Dong, C. L.; Guo, X.; Chen, J. L.; Huang, Y. C.; Shen, S. H.; Chen, Y. B.; Guo, L. J. et al. Atomically dispersed janus nickel sites on red phosphorus for photocatalytic overall water splitting. Angew. Chem., Int. Ed. 2022, 61, e202204711.

    CAS  Google Scholar 

  46. Lin, Z.; Wang, Y. Q.; Peng, Z. M.; Huang, Y. C.; Meng, F. Q.; Chen, J. L.; Dong, C. L.; Zhang, Q. H.; Wang, R. Z.; Zhao, D. M. et al. Single-metal atoms and ultra-small clusters manipulating charge carrier migration in polymeric perylene diimide for efficient photocatalytic oxygen production. Adv. Energy Mater., in press, https://doi.org/10.1002/aenm.202200716.

  47. Qi, Y.; Zhao, Y.; Gao, Y. Y.; Li, D.; Li, Z.; Zhang, F. X.; Li, C. Redox-based visible-light-driven Z-scheme overall water splitting with apparent quantum efficiency exceeding 10%. Joule 2018, 2, 2393–2402.

    CAS  Google Scholar 

  48. Huang, Y.; Li, K.; Zhou, J. C.; Guan, J.; Zhu, F. F.; Wang, K.; Liu, M. C.; Chen, W. S.; Li, N. X. Nitrogen-stabilized oxygen vacancies in TiO2 for site-selective loading of Pt and CoOx cocatalysts toward enhanced photoreduction of CO2 to CH4. Chem. Eng. J. 2022, 439, 135744.

    CAS  Google Scholar 

  49. Singh, R. B.; Matsuzaki, H.; Suzuki, Y.; Seki, K.; Minegishi, T.; Hisatomi, T.; Domen, K.; Furube, A. Trapped state sensitive kinetics in LaTiO2N solid photocatalyst with and without cocatalyst loading. J. Am. Chem. Soc. 2014, 136, 17324–17331.

    CAS  Google Scholar 

  50. Chen, S.; Shen, S.; Liu, G.; Qi, Y.; Zhang, F.; Li, C. Interface engineering of a CoOx/Ta3N5 photocatalyst for unprecedented water oxidation performance under visible-light-irradiation. Angew. Chem., Int. Ed. 2015, 54, 3047–3051.

    CAS  Google Scholar 

  51. Feng, J. Y.; Luo, W. J.; Fang, T.; Lv, H.; Wang, Z. Q.; Gao, J.; Liu, W. M.; Yu, T.; Li, Z. S.; Zou, Z. G. Highly photo-responsive LaTiO2N photoanodes by improvement of charge carrier transport among film particles. Adv. Funct. Mater. 2014, 24, 3535–3542.

    CAS  Google Scholar 

  52. Abe, R.; Sayama, K.; Sugihara, H. Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3/I. J. Phys. Chem. B 2005, 109, 16052–16061.

    CAS  Google Scholar 

  53. Maeda, K.; Higashi, M.; Lu, D. L.; Abe, R.; Domen, K. Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J. Am. Chem. Soc. 2010, 132, 5858–5868.

    CAS  Google Scholar 

  54. Duong, H. P.; Mashiyama, T.; Kobayashi, M.; Iwase, A.; Kudo, A.; Asakura, Y.; Yin, S.; Kakihana, M.; Kato, H. Z-scheme water splitting by microspherical Rh-doped SrTiO3 photocatalysts prepared by a spray drying method. Appl. Catal. B 2019, 252, 222–229.

    CAS  Google Scholar 

  55. Niishiro, R.; Tanaka, S.; Kudo, A. Hydrothermal-synthesized SrTiO3 photocatalyst codoped with rhodium and antimony with visible-light response for sacrificial H2 and O2 evolution and application to overall water splitting. Appl. Catal. 2014, 150–151, 187–196.

    Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from the National Natural Science Foundation of China (No. 51906197), the National Key Research and Development Program of China (No. 2018YFB1502003), the National Natural Science Foundation of China (Nos. 51961165103, 21875183, and 22002126), the National Program for Support of Top-notch Young Professionals, the Natural Science Basic Research Program of Shaanxi Province (No. 2019JCW-10), the Natural Science Foundation of Jiangsu Province (No. BK20190220), China Postdoctoral Science Foundation (Nos. 2020M673386 and 2020T130503), the “Fundamental Research Funds for the Central Universities”, and “The Youth Innovation Team of Shaanxi Universities”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaohua Shen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, X., Tian, L., Zhang, Y. et al. Photocatalytic water splitting on BiVO4: Balanced charge-carrier consumption and selective redox reaction. Nano Res. 16, 4568–4573 (2023). https://doi.org/10.1007/s12274-022-4758-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4758-8

Keywords

Navigation