Skip to main content
Log in

Apoptotic vesicles rejuvenate mesenchymal stem cells via Rab7-mediated autolysosome formation and alleviate bone loss in aging mice

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Aging skeletons display decreased bone mass, increased marrow adiposity, and impaired bone marrow mesenchymal stem cells (MSCs). Apoptosis is a programmed cell death process that generates a large number of apoptotic vesicles (apoVs). Dysregulated apoptosis has been closely linked to senescence-associated diseases. However, whether apoVs mediate aging-related bone loss is not clear. In this study, we showed that young MSC-derived apoVs effectively rejuvenated the nuclear abnormalities of aged bone marrow MSCs and restored their impaired self-renewal, osteo-/adipo-genic lineage differentiation capacities via activating autophagy. Mechanistically, apoptotic young MSCs generated and enriched a high level of Ras-related protein 7 (Rab7) into apoVs. Subsequently, recipient aged MSCs reused apoV-derived Rab7 to restore autolysosomes formation, thereby contributing to autophagy flux activation and MSC rejuvenation. Moreover, systemic infusion of young MSC-derived apoVs enhanced bone mass, reduced marrow adiposity, and recused the impairment of recipient MSCs in aged mice. Our findings reveal the role of apoVs in rejuvenating aging-MSCs via restoring autolysosome formation and provide a potential approach for treating age-related bone loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. López-Otín, C.; Blasco, M. A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217.

    Article  Google Scholar 

  2. Hooten, N. N.; Pacheco, N. L.; Smith, J. T.; Evans, M. K. The accelerated aging phenotype: The role of race and social determinants of health on aging. Ageing Res. Rev. 2022, 73, 101536.

    Article  Google Scholar 

  3. He, S. H.; Sharpless, N. E. Senescence in health and disease. Cell 2017, 169, 1000–1011.

    Article  CAS  Google Scholar 

  4. Deng, P.; Yuan, Q.; Cheng, Y. D.; Li, J.; Liu, Z. Q.; Liu, Y.; Li, Y.; Su, T.; Wang, J.; Salvo, M. E. et al. Loss of KDM4B exacerbates bone-fat imbalance and mesenchymal stromal cell exhaustion in skeletal aging. Cell Stem Cell 2021, 28, 1057–1073.e7.

    Article  CAS  Google Scholar 

  5. Kawai, M.; Rosen, C. J. Adiposity and bone accrual—Still an established paradigm? Nat. Rev. Endocrinol. 2010, 6, 63–64.

    Article  Google Scholar 

  6. Yamaza, T.; Miura, Y.; Akiyama, K.; Bi, Y. M.; Sonoyama, W.; Gronthos, S.; Chen, W. J.; Le, A.; Shi, S. T. Mesenchymal stem cellmediated ectopic hematopoiesis alleviates aging-related phenotype in immunocompromised mice. Blood 2009, 113, 2595–2604.

    Article  CAS  Google Scholar 

  7. Zaidi, M.; Sun, L.; Blair, H. C. Special stem cells for bone. Cell Stem Cell 2012, 10, 233–234.

    Article  CAS  Google Scholar 

  8. Zhang, H. G.; Xu, R. Y.; Li, B.; Xin, Z. L.; Ling, Z. J.; Zhu, W. W.; Li, X.; Zhang, P.; Fu, Y.; Chen, J. Y. et al. LncRNA NEAT1 controls the lineage fates of BMSCs during skeletal aging by impairing mitochondrial function and pluripotency maintenance. Cell Death Differ. 2022, 29, 351–365.

    Article  CAS  Google Scholar 

  9. Goodell, M. A.; Rando, T. A. Stem cells and healthy aging. Science 2015, 350, 1199–1204.

    Article  CAS  Google Scholar 

  10. Lei, Q.; Gao, F.; Liu, T.; Ren, W. X.; Chen, L.; Cao, Y. L.; Chen, W. L.; Guo, S. J.; Zhang, Q.; Chen, W. Q. et al. Extracellular vesicles deposit PCNA to rejuvenate aged bone marrow-derived mesenchymal stem cells and slow age-related degeneration. Sci. Transl. Med. 2021, 13, eaaz8697.

    Article  CAS  Google Scholar 

  11. Somiya, M.; Kuroda, S. Reporter gene assay for membrane fusion of extracellular vesicles. J. Extracell. Vesicles 2021, 10, e12171.

    Article  CAS  Google Scholar 

  12. Gong, L. Z.; Chen, B.; Zhang, J. T.; Sun, Y. J.; Yuan, J.; Niu, X.; Hu, G. W.; Chen, Y.; Xie, Z. P.; Deng, Z. F. et al. Human ESC-sEVs alleviate age-related bone loss by rejuvenating senescent bone marrow-derived mesenchymal stem cells. J. Extracell. Vesicles 2020, 9, 1800971.

    Article  CAS  Google Scholar 

  13. Xiao, X.; Xu, M. Q.; Yu, H. L.; Wang, L. P.; Li, X. X.; Rak, J.; Wang, S. H.; Zhao, R. C. Mesenchymal stem cell-derived small extracellular vesicles mitigate oxidative stress-induced senescence in endothelial cells via regulation of miR-146a/Src. Signal Transduct. Target. Ther. 2021, 6, 354.

    Article  CAS  Google Scholar 

  14. Boulestreau, J.; Maumus, M.; Jorgensen, C.; Noël, D. Extracellular vesicles from mesenchymal stromal cells: Therapeutic perspectives for targeting senescence in osteoarthritis. Adv. Drug Delivery Rev. 2021, 175, 113836.

    Article  CAS  Google Scholar 

  15. Tucher, C.; Bode, K.; Schiller, P.; Claßen, L.; Birr, C.; Souto-Carneiro, M. M.; Blank, N.; Lorenz, H. M.; Schiller, M. Extracellular vesicle subtypes released from activated or apoptotic Tlymphocytes carry a specific and stimulus-dependent protein cargo. Front. Immunol. 2018, 9, 534.

    Article  Google Scholar 

  16. Wickman, G. R.; Julian, L.; Mardilovich, K.; Schumacher, S.; Munro, J.; Rath, N.; Zander, S. A.; Mleczak, A.; Sumpton, D.; Morrice, N. et al. Blebs produced by actin-myosin contraction during apoptosis release damage-associated molecular pattern proteins before secondary necrosis occurs. Cell Death Differ. 2013, 20, 1293–1305.

    Article  CAS  Google Scholar 

  17. Kakarla, R.; Hur, J.; Kim, Y. J.; Kim, J.; Chwae, Y. J. Apoptotic cell-derived exosomes: Messages from dying cells. Exp. Mol. Med. 2020, 52, 1–6.

    Article  CAS  Google Scholar 

  18. Zhang, X.; Tang, J. X.; Kou, X. X.; Huang, W. Y.; Zhu, Y.; Jiang, Y. H.; Yang, K. K.; Li, C.; Hao, M.; Qu, Y. et al. Proteomic analysis of MSC-derived apoptotic vesicles identifies Fas inheritance to ameliorate haemophilia A via activating platelet functions. J. Extracell. Vesicles 2022, 11, e12240.

    Article  Google Scholar 

  19. Caruso, S.; Poon, I. K. H. Apoptotic cell-derived extracellular vesicles: More than just debris. Front. Immunol. 2018, 9, 1486.

    Article  Google Scholar 

  20. Wang, J.; Cao, Z. Y.; Wang, P. P.; Zhang, X.; Tang, J. X.; He, Y. F.; Huang, Z. Q.; Mao, X. L.; Shi, S. T.; Kou, X. X. Apoptotic extracellular vesicles ameliorate multiple myeloma by restoring Fasmediated apoptosis. ACS Nano. 2021, 15, 14360–14372.

    Article  CAS  Google Scholar 

  21. Zheng, C. X.; Sui, B.; Zhang, X.; Hu, J. C.; Chen, J.; Liu, J.; Wu, D.; Ye, Q. Y.; Xiang, L.; Qiu, X. Y. et al. Apoptotic vesicles restore liver macrophage homeostasis to counteract type 2 diabetes. J. Extracell. Vesicles 2021, 10, e12109.

    Article  CAS  Google Scholar 

  22. Liu, D. W.; Kou, X. X.; Chen, C.; Liu, S. Y.; Liu, Y.; Yu, W. J.; Yu, T. T.; Yang, R. L.; Wang, R. C.; Zhou, Y. H. et al. Circulating apoptotic bodies maintain mesenchymal stem cell homeostasis and ameliorate osteopenia via transferring multiple cellular factors. Cell Res. 2018, 28, 918–933.

    Article  CAS  Google Scholar 

  23. Medina, C. B.; Mehrotra, P.; Arandjelovic, S.; Perry, J. S. A.; Guo, Y. Z.; Morioka, S.; Barron, B.; Walk, S. F.; Ghesquière, B.; Krupnick, A. S. et al. Metabolites released from apoptotic cells act as tissue messengers. Nature 2020, 580, 130–135.

    Article  CAS  Google Scholar 

  24. Liu, H.; Liu, S. Y.; Qiu, X. Y.; Yang, X. S.; Bao, L. L.; Pu, F. X.; Liu, X. M.; Li, C. Y.; Xuan, K.; Zhou, J. et al. Donor MSCs release apoptotic bodies to improve myocardial infarction via autophagy regulation in recipient cells. Autophagy 2020, 16, 2140–2155.

    Article  CAS  Google Scholar 

  25. Argüelles, S.; Guerrero-Castilla, A.; Cano, M.; Muñoz, M. F.; Ayala, A. Advantages and disadvantages of apoptosis in the aging process. Ann. N. Y. Acad. Sci. 2019, 1443, 20–33.

    Article  Google Scholar 

  26. Salminen, A.; Ojala, J.; Kaarniranta, K. Apoptosis and aging: Increased resistance to apoptosis enhances the aging process. Cell. Mol. Life Sci. 2011, 68, 1021–1031.

    Article  CAS  Google Scholar 

  27. Leidal, A. M.; Levine, B.; Debnath, J. Autophagy and the cell biology of age-related disease. Nat. Cell Biol. 2018, 20, 1338–1348.

    Article  CAS  Google Scholar 

  28. Aman, Y.; Schmauck-Medina, T.; Hansen, M.; Morimoto, R. I.; Simon, A. K.; Bjedov, I.; Palikaras, K.; Simonsen, A.; Johansen, T.; Tavernarakis, N. et al. Autophagy in healthy aging and disease. Nat. Aging 2021, 1, 634–650.

    Article  Google Scholar 

  29. Kaushik, S.; Tasset, I.; Arias, E.; Pampliega, O.; Wong, E.; Martinez-Vicente, M.; Cuervo, A. M. Autophagy and the hallmarks of aging. Ageing Res. Rev. 2021, 72, 101468.

    Article  CAS  Google Scholar 

  30. Rubinsztein, D. C.; Mariño, G.; Kroemer, G. Autophagy and aging. Cell 2011, 146, 682–695.

    Article  CAS  Google Scholar 

  31. Ho, T. T.; Warr, M. R.; Adelman, E. R.; Lansinger, O. M.; Flach, J.; Verovskaya, E. V.; Figueroa, M. E.; Passeguù, E. Autophagy maintains the metabolism and function of young and old stem cells. Nature 2017, 543, 205–210.

    Article  CAS  Google Scholar 

  32. Ma, Y.; Qi, M.; An, Y.; Zhang, L. Q.; Yang, R.; Doro, D. H.; Liu, W. J.; Jin, Y. Autophagy controls mesenchymal stem cell properties and senescence during bone aging. Aging Cell 2018, 17, e12709.

    Article  Google Scholar 

  33. Liu, F.; Yuan, Y. J.; Bai, L.; Yuan, L. H.; Li, L.; Liu, J. P.; Chen, Y. N.; Lu, Y. R.; Cheng, J. Q.; Zhang, J. LRRc17 controls BMSC senescence via mitophagy and inhibits the therapeutic effect of BMSCs on ovariectomy-induced bone loss. Redox Biol. 2021, 43, 101963.

    Article  CAS  Google Scholar 

  34. Mizushima, N.; Levine, B.; Cuervo, A. M.; Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 2008, 451, 1069–1075.

    Article  CAS  Google Scholar 

  35. Sasaki, T.; Lian, S. S.; Khan, A.; Llop, J. R.; Samuelson, A. V.; Chen, W. B.; Klionsky, D. J.; Kishi, S. Autolysosome biogenesis and developmental senescence are regulated by both Spns1 and v-ATPase. Autophagy 2017, 13, 386–403.

    Article  CAS  Google Scholar 

  36. Ma, L.; Huang, Z. Q.; Wu, D.; Kou, X. X.; Mao, X. L.; Shi, S. T. CD146 controls the quality of clinical grade mesenchymal stem cells from human dental pulp. Stem Cell Res. Ther. 2021, 12, 488.

    Article  CAS  Google Scholar 

  37. Huang, R. Q.; Qin, C. J.; Wang, J. M.; Hu, Y. Q.; Zheng, G. P.; Qiu, G. G.; Ge, M. H.; Tao, H. K.; Shu, Q.; Xu, J. G. Differential effects of extracellular vesicles from aging and young mesenchymal stem cells in acute lung injury. Aging 2019, 11, 7996–8014.

    Article  CAS  Google Scholar 

  38. Shi, H. Z.; Zeng, J. C.; Shi, S. H.; Giannakopoulos, H.; Zhang, Q. Z.; Le, A. D. Extracellular vesicles of GMSCs alleviate aging-related cell senescence. J. Dent. Res. 2021, 100, 283–292.

    Article  CAS  Google Scholar 

  39. Liu, S. Q.; Mahairaki, V.; Bai, H.; Ding, Z.; Li, J. X.; Witwer, K. W.; Cheng, L. Z. Highly purified human extracellular vesicles produced by stem cells alleviate aging cellular phenotypes of senescent human cells. Stem Cells 2019, 37, 779–790.

    Article  CAS  Google Scholar 

  40. Zhao, D. Y.; Tao, W. H.; Li, S. H.; Chen, Y.; Sun, Y. H.; He, Z. G.; Sun, B. J.; Sun, J. Apoptotic body-mediated intercellular delivery for enhanced drug penetration and whole tumor destruction. Sci. Adv. 2021, 7, eabg0880.

    Article  CAS  Google Scholar 

  41. Baar, M. P.; Brandt, R. M. C.; Putavet, D. A.; Klein, J. D. D.; Derks, K. W. J.; Bourgeois, B. R. M.; Stryeck, S.; Rijksen, Y.; Van Willigenburg, H.; Feijtel, D. A. et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 2017, 169, 132–147.e16.

    Article  CAS  Google Scholar 

  42. Hu, L.; Li, H. Q.; Zi, M. T.; Li, W.; Liu, J.; Yang, Y.; Zhou, D. H.; Kong, Q. P.; Zhang, Y. X.; He, Y. H. Why senescent cells are resistant to apoptosis: An insight for senolytic development. Front. Cell Dev. Biol. 2022, 10, 822816.

    Article  Google Scholar 

  43. Akers, J. C.; Gonda, D.; Kim, R.; Carter, B. S.; Chen, C. C. Biogenesis of extracellular vesicles (EV): Exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J. Neuro Oncol. 2013, 113, 1–11.

    Article  Google Scholar 

  44. Eitan, E.; Suire, C.; Zhang, S.; Mattson, M. P. Impact of lysosome status on extracellular vesicle content and release. Ageing Res. Rev. 2016, 32, 65–74.

    Article  CAS  Google Scholar 

  45. Ansari, M. Y.; Ball, H. C.; Wase, S. J.; Novak, K.; Haqqi, T. M. Lysosomal dysfunction in osteoarthritis and aged cartilage triggers apoptosis in chondrocytes through BAX mediated release of cytochrome c. Osteoarthritis Cartilage 2021, 29, 100–112.

    Article  CAS  Google Scholar 

  46. Kitada, M.; Koya, D. Autophagy in metabolic disease and ageing. Nat. Rev. Endocrinol. 2021, 17, 647–661.

    Article  Google Scholar 

  47. Shi, B. H.; Ma, M. Q.; Zheng, Y. T.; Pan, Y. Y.; Lin, X. H. mTOR and Beclin1:Two key autophagy-related molecules and their roles in myocardial ischemia/reperfusion injury. J. Cell. Physiol. 2019, 234, 12562–12568.

    Article  CAS  Google Scholar 

  48. Tian, J.; Kou, X. X.; Wang, R. C.; Jing, H.; Chen, C.; Tang, J. X.; Mao, X. L.; Zhao, B. J.; Wei, X.; Shi, S. T. Autophagy controls mesenchymal stem cell therapy in psychological stress colitis mice. Autophagy 2021, 17, 2586–2603.

    Article  CAS  Google Scholar 

  49. Chen, W. L.; Xiao, W. W.; Liu, X. Z.; Yuan, P. P.; Zhang, S. Q.; Wang, Y. G.; Wu, W. Pharmacological manipulation of macrophage autophagy effectively rejuvenates the regenerative potential of biodegrading vascular graft in aging body. Bioact. Mater. 2022, 11, 283–299.

    Article  CAS  Google Scholar 

  50. Yoshida, G.; Kawabata, T.; Takamatsu, H.; Saita, S.; Nakamura, S.; Nishikawa, K.; Fujiwara, M.; Enokidani, Y.; Yamamuro, T.; Tabata, K. et al. Degradation of the NOTCH intracellular domain by elevated autophagy in osteoblasts promotes osteoblast differentiation and alleviates osteoporosis. Autophagy, in press, https://doi.org/10.1080/15548627.2021.2017587.

  51. Gong, Y.; Li, Z. Q.; Zou, S. T.; Deng, D. Z.; Lai, P. L.; Hu, H. L.; Yao, Y. Z.; Hu, L.; Zhang, S.; Li, K. et al. Vangl2 limits chaperone-mediated autophagy to balance osteogenic differentiation in mesenchymal stem cells. Dev. Cell 2021, 56, 2103–2120.e9.

    Article  CAS  Google Scholar 

  52. Li, X.; Xu, J. K.; Dai, B. Y.; Wang, X. L.; Guo, Q. Y.; Qin, L. Targeting autophagy in osteoporosis: From pathophysiology to potential therapy. Ageing Res. Rev. 2020, 62, 101098.

    Article  CAS  Google Scholar 

  53. Zhao, Y. G.; Codogno, P.; Zhang, H. Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat. Rev. Mol. Cell Biol. 2021, 22, 733–750.

    Article  CAS  Google Scholar 

  54. Sasaki, T.; Lian, S. S.; Qi, J.; Bayliss, P. E.; Carr, C. E.; Johnson, J. L.; Guha, S.; Kobler, P.; Catz, S. D.; Gill, M. et al. Aberrant autolysosomal regulation is linked to the induction of embryonic senescence: Differential roles of Beclin 1 and p53 in vertebrate Spns1 deficiency. PLoS Genet. 2014, 10, e1004409.

    Article  Google Scholar 

  55. Zhu, H. Y.; Li, Q. Q.; Liao, T. P.; Yin, X.; Chen, Q.; Wang, Z. Y.; Dai, M. F.; Yi, L.; Ge, S. Y.; Miao, C. J. et al. Metabolomic profiling of single enlarged lysosomes. Nat. Methods 2021, 18, 788–798.

    Article  CAS  Google Scholar 

  56. Fortunato, F.; Bürgers, H.; Bergmann, F.; Rieger, P.; Büchler, M. W.; Kroemer, G.; Werner, J. Impaired autolysosome formation correlates with Lamp-2 depletion: Role of apoptosis, autophagy, and necrosis in pancreatitis. Gastroenterology 2009, 137, 350–360.e5.

    Article  CAS  Google Scholar 

  57. Eskelinen, E. L. Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol. Aspects Med. 2006, 27, 495–502.

    Article  CAS  Google Scholar 

  58. Notomi, S.; Ishihara, K.; Efstathiou, N. E.; Lee, J. J.; Hisatomi, T.; Tachibana, T.; Konstantinou, E. K.; Ueta, T.; Murakami, Y.; Maidana, D. E. et al. Genetic LAMP2 deficiency accelerates the age-associated formation of basal laminar deposits in the retina. Proc. Natl. Acad. Sci. USA 2019, 116, 23724–23734.

    Article  CAS  Google Scholar 

  59. Langemeyer, L.; Fröhlich, F.; Ungermann, C. Rab GTPase function in endosome and lysosome biogenesis. Trends Cell Biol. 2018, 28, 957–970.

    Article  CAS  Google Scholar 

  60. Gutierrez, M. G.; Munafó, D. B.; Berón, W.; Colombo, M. I. Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J. Cell Sci. 2004, 117, 2687–2697.

    Article  CAS  Google Scholar 

  61. Szatmári, Z.; Sass, M. The autophagic roles of Rab small GTPases and their upstream regulators: A review. Autophagy 2014, 10, 1154–1166.

    Article  Google Scholar 

  62. Park, Y. E.; Hayashi, Y. K.; Bonne, G.; Arimura, T.; Noguchi, S.; Nonaka, I.; Nishino, I. Autophagic degradation of nuclear components in mammalian cells. Autophagy 2009, 5, 795–804.

    Article  CAS  Google Scholar 

  63. Lan, Y. Y.; Londoño, D.; Bouley, R.; Rooney, M. S.; Hacohen, N. Dnase2a deficiency uncovers lysosomal clearance of damaged nuclear DNA via autophagy. Cell Rep. 2014, 9, 180–192.

    Article  CAS  Google Scholar 

  64. Qiang, L.; Zhao, B. Z.; Shah, P.; Sample, A.; Yang, S.; He, Y. Y. Autophagy positively regulates DNA damage recognition by nucleotide excision repair. Autophagy 2016, 12, 357–368.

    Article  CAS  Google Scholar 

  65. Jin, X.; Wang, K. H.; Wang, L.; Liu, W. W.; Zhang, C.; Qiu, Y. X.; Liu, W.; Zhang, H. Y.; Zhang, D.; Yang, Z. X. et al. RAB7 activity is required for the regulation of mitophagy in oocyte meiosis and oocyte quality control during ovarian aging. Autophagy 2022, 18, 643–660.

    Article  CAS  Google Scholar 

  66. Snider, M. D. A role for Rab7 GTPase in growth factor-regulated cell nutrition and apoptosis. Mol. Cell 2003, 12, 796–797.

    Article  CAS  Google Scholar 

  67. Lv, Y. J.; Yang, Y.; Sui, B. D.; Hu, C. H.; Zhao, P.; Liao, L.; Chen, J.; Zhang, L. Q.; Yang, T. T.; Zhang, S. F. et al. Resveratrol counteracts bone loss via mitofilin-mediated osteogenic improvement of mesenchymal stem cells in senescence-accelerated mice. Theranostics 2018, 8, 2387–2406.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (No. 82170924), the National Key R&D Program of China (No. 2021YFA1100600), the Pearl River Talent Recruitment Program (Nos. 2019ZT08Y485 and 2019JC01Y138), the Guangdong Financial Fund for High-Caliber Hospital Construction (174-2018-XMZC-0001-03-0125, C-03 and D-11), the Sun Yat-sen University Young Teacher Key Cultivation Project (No. 18ykzd05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengmei Lin or Xiaoxing Kou.

Electronic Supplementary Material

12274_2022_4709_MOESM1_ESM.pdf

Apoptotic vesicles rejuvenate mesenchymal stem cells via Rab7-mediated autolysosome formation and alleviate bone loss in aging mice

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, F., Huang, Z., Ou, Q. et al. Apoptotic vesicles rejuvenate mesenchymal stem cells via Rab7-mediated autolysosome formation and alleviate bone loss in aging mice. Nano Res. 16, 822–833 (2023). https://doi.org/10.1007/s12274-022-4709-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4709-4

Keywords

Navigation