Skip to main content
Log in

Robust n-type doping of WSe2 enabled by controllable proton irradiation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) transition metal dichalcogenides (TMDs) are considered to be promising building blocks for the next generation electronic and optoelectronic devices. Various doping schemes and work function engineering techniques have been explored to overcome the intrinsic performance limits of 2D TMDs. However, a reliable and long-time air stable doping scheme is still lacking in this field. In this work, we utilize keV ion beams of H2+ to irradiate layered WSe2 crystals and obtain efficient n-type doping effect for all irradiated crystals within a fluence of 1 × 1014 protons·cm−2 (1e14). Moreover, the irradiated WSe2 remains an n-type semiconductor even after it is exposed to ambient conditions for a year. Localized ion irradiation with a focused beam can directly pattern on the sample to make high performance homogenous p-n junction diodes. Raman and photoluminescence (PL) spectra demonstrate that the WSe2 crystal lattice stays intact after irradiation within 1e14. We attribute the reliable electron-doping to the significant increase in Se vacancies after the proton irradiation, which is confirmed by our scanning transmission electron microscope (STEM) results. Our work demonstrates a reliable and long-term air stable n-type doping scheme to realize high-performance electronic TMD devices, which is also suitable for further integration with other 2D devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  CAS  Google Scholar 

  2. Wang, H.; Yu, L. L.; Lee, Y. H.; Shi, Y. M.; Hsu, A.; Chin, M. L.; Li, L. J.; Dubey, M.; Kong, J.; Palacios, T. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012, 12, 4674–4680.

    Article  CAS  Google Scholar 

  3. Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320–2325.

    Article  CAS  Google Scholar 

  4. Lee, G. H.; Yu, Y. J.; Cui, X.; Petrone, N.; Lee, C. H.; Choi, M. S.; Lee, D. Y.; Lee, C.; Yoo, W. J.; Watanabe, K. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 2013, 7, 7931–7936.

    Article  CAS  Google Scholar 

  5. Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678.

    Article  CAS  Google Scholar 

  6. Liu, H.; Neal, A. T.; Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano 2012, 6, 8563–8569.

    Article  CAS  Google Scholar 

  7. Shi, Y. M.; Li, H. N.; Li, L. J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. 2015, 44, 2744–2756.

    Article  CAS  Google Scholar 

  8. Chen, M. L.; Sun, X. D.; Liu, H.; Wang, H. W.; Zhu, Q. B.; Wang, S. S.; Du, H. F.; Dong, B. J.; Zhang, J.; Sun, Y. et al. A FinFET with one atomic layer channel. Nat. Commun. 2020, 11, 1205.

    Article  CAS  Google Scholar 

  9. Liu, Y.; Duan, X. D.; Huang, Y.; Duan, X. F. Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev. 2018, 47, 6388–6409.

    Article  CAS  Google Scholar 

  10. Long, M. S.; Wang, P.; Fang, H. H.; Hu, W. D. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 2019, 29, 1803807.

    Article  Google Scholar 

  11. Sun, Z. P.; Martinez, A.; Wang, F. Optical modulators with 2D layered materials. Nat. Photonics 2016, 10, 227–238.

    Article  CAS  Google Scholar 

  12. Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.; Rooney, A. P.; Gholinia, A.; Watanabe, K.; Taniguchi, T.; Haigh, S. J.; Geim, A. K.; Tartakovskii, A. I. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 2015, 14, 301–306.

    Article  CAS  Google Scholar 

  13. Yoo, H.; Heo, K.; Ansari, H. R.; Cho, S. Recent advances in electrical doping of 2D semiconductor materials: Methods, analyses, and applications. Nanomaterials 2021, 11, 832.

    Article  CAS  Google Scholar 

  14. Luo, P.; Zhuge, F. W.; Zhang, Q. F.; Chen, Y. Q.; Lv, L.; Huang, Y.; Li, H. Q.; Zhai, T. Y. Doping engineering and functionalization of two-dimensional metal chalcogenides. Nanoscale Horiz. 2019, 4, 26–51.

    Article  CAS  Google Scholar 

  15. Loh, L.; Zhang, Z. P.; Bosman, M.; Eda, G. Substitutional doping in 2D transition metal dichalcogenides. Nano Res. 2021, 14, 1668–1681.

    Article  CAS  Google Scholar 

  16. Cho, K.; Pak, J.; Chung, S.; Lee, T. Recent advances in interface engineering of transition-metal dichalcogenides with organic molecules and polymers. ACS Nano 2019, 13, 9713–9734.

    Article  CAS  Google Scholar 

  17. Schmidt, H.; Giustiniano, F.; Eda, G. Electronic transport properties of transition metal dichalcogenide field-effect devices: Surface and interface effects. Chem. Soc. Rev. 2015, 44, 7715–7736.

    Article  CAS  Google Scholar 

  18. Kiriya, D.; Tosun, M.; Zhao, P. D.; Kang, J. S.; Javey, A. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 2014, 136, 7853–7856.

    Article  CAS  Google Scholar 

  19. Sim, D. M.; Kim, M.; Yim, S.; Choi, M. J.; Choi, J.; Yoo, S.; Jung, Y. S. Controlled doping of vacancy-containing few-layer MoS2 via highly stable thiol-based molecular chemisorption. ACS Nano 2015, 9, 12115–12123.

    Article  CAS  Google Scholar 

  20. Kang, D. H.; Shim, J.; Jang, S. K.; Jeon, J.; Jeon, M. H.; Yeom, G. Y.; Jung, W. S.; Jang, Y. H.; Lee, S.; Park, J. H. Controllable nondegenerate p-type doping of tungsten diselenide by octadecyltrichlorosilane. ACS Nano 2015, 9, 1099–1107.

    Article  CAS  Google Scholar 

  21. Benjamin, C. J.; Zhang, S.; Chen, Z. H. Controlled doping of transition metal dichalcogenides by metal work function tuning in phthalocyanine compounds. Nanoscale 2018, 10, 5148–5153.

    Article  CAS  Google Scholar 

  22. Pak, J.; Jang, J.; Cho, K.; Kim, T. Y.; Kim, J. K.; Song, Y.; Hong, W. K.; Min, M.; Lee, H.; Lee, T. Enhancement of photodetection characteristics of MoS2 field effect transistors using surface treatment with copper phthalocyanine. Nanoscale 2015, 7, 18780–18788.

    Article  CAS  Google Scholar 

  23. Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944–5948.

    Article  CAS  Google Scholar 

  24. Li, Y.; Xu, C. Y.; Hu, P. A.; Zhen, L. Carrier control of MoS2 nanoflakes by functional self-assembled monolayers. ACS Nano 2013, 7, 7795–7804.

    Article  CAS  Google Scholar 

  25. Dey, S.; Matte, H. S. S. R.; Shirodkar, S. N.; Waghmare, U. V.; Rao, C. N. R. Charge-transfer interaction between few-layer MoS2 and tetrathiafulvalene. Chem. -Asian J. 2013, 8, 1780–1784.

    Article  CAS  Google Scholar 

  26. Kang, D. H.; Kim, M. S.; Shim, J.; Jeon, J.; Park, H. Y.; Jung, W. S.; Yu, H. Y.; Pang, C. H.; Lee, S.; Park, J. H. High-performance transition metal dichalcogenide photodetectors enhanced by self-assembled monolayer doping. Adv. Funct. Mater. 2015, 25, 4219–4227.

    Article  CAS  Google Scholar 

  27. Tarasov, A.; Zhang, S. Y.; Tsai, M. Y.; Campbell, P. M.; Graham, S.; Barlow, S.; Marder, S. R.; Vogel, E. M. Controlled doping of large-area trilayer MoS2 with molecular reductants and oxidants. Adv. Mater. 2015, 27, 1175–1181.

    Article  CAS  Google Scholar 

  28. Andleeb, S.; Singh, A. K.; Eom, J. Chemical doping of MoS2 multilayer by p-toluene sulfonic acid. Sci. Technol. Adv. Mater. 2015, 16, 035009.

    Article  Google Scholar 

  29. Ghimire, G.; Dhakal, K. P.; Neupane, G. P.; Jo, S. G.; Kim, H.; Seo, C.; Lee, Y. H.; Joo, J.; Kim, J. Optically active charge transfer in hybrids of Alq3 nanoparticles and MoS2 monolayer. Nanotechnology 2017, 28, 185702.

    Article  Google Scholar 

  30. Heo, K.; Jo, S. H.; Shim, J.; Kang, D. H.; Kim, J. H.; Park, J. H. Stable and reversible triphenylphosphine-based n-type doping technique for molybdenum disulfide (MoS2). ACS Appl. Mater. Interfaces 2018, 10, 32765–32772.

    Article  CAS  Google Scholar 

  31. Peimyoo, N.; Yang, W. H.; Shang, J. Z.; Shen, X. N.; Wang, Y. L.; Yu, T. Chemically driven tunable light emission of charged and neutral excitons in monolayer WS2. ACS Nano 2014, 8, 11320–11329.

    Article  CAS  Google Scholar 

  32. Yoo, H.; Hong, S.; Moon, H.; On, S.; Ahn, H.; Lee, H. K.; Kim, S.; Hong, Y. K.; Kim, J. J. Chemical doping effects on CVD-grown multilayer MoSe2 transistor. Adv. Electron. Mater. 2018, 4, 1700639.

    Article  Google Scholar 

  33. Ghorbani-Asl, M.; Kretschmer, S.; Spearot, D. E.; Krasheninnikov, A. V. Two-dimensional MoS2 under ion irradiation: From controlled defect production to electronic structure engineering. 2D Mater. 2017, 4, 025078.

    Article  Google Scholar 

  34. Bertolazzi, S.; Bonacchi, S.; Nan, G. J.; Pershin, A.; Beljonne, D.; Samorì, P. Engineering chemically active defects in monolayer MoS2 transistors via ion-beam irradiation and their healing via vapor deposition of alkanethiols. Adv. Mater. 2017, 29, 1606760.

    Article  Google Scholar 

  35. Mupparapu, R.; Steinert, M.; George, A.; Tang, Z.; Turchanin, A.; Pertsch, T.; Staude, I. Facile resist-free nanopatterning of monolayers of MoS2 by focused ion-beam milling. Adv. Mater. Interfaces 2020, 7, 2000858.

    Article  CAS  Google Scholar 

  36. Madauß, L.; Ochedowski, O.; Lebius, H.; D’Etat, B. B.; Naylor, C. H.; Johnson, A. T. C.; Kotakoski, J.; Schleberger, M. Defect engineering of single- and few-layer MoS2 by swift heavy ion irradiation. 2D Mater. 2017, 4, 015034.

    Article  Google Scholar 

  37. Valerius, P.; Kretschmer, S.; Senkovskiy, B. V.; Wu, S. L.; Hall, J.; Herman, A.; Ehlen, N.; Ghorbani-Asl, M.; Grüneis, A.; Krasheninnikov, A. V. et al. Reversible crystalline-to-amorphous phase transformation in monolayer MoS2 under grazing ion irradiation. 2D Mater. 2020, 7, 025005.

    Article  CAS  Google Scholar 

  38. Choudhary, N.; Islam, M. R.; Kang, N.; Tetard, L.; Jung, Y.; Khondaker, S. I. Two-dimensional lateral heterojunction through bandgap engineering of MoS2 via oxygen plasma. J. Phys.: Condens. Matter 2016, 28, 364002.

    Google Scholar 

  39. Chen, Y.; Huang, S. X.; Ji, X.; Adepalli, K.; Yin, K. D.; Ling, X.; Wang, X. W.; Xue, J. M.; Dresselhaus, M.; Kong, J. et al. Tuning electronic structure of single layer MoS2 through defect and interface engineering. ACS Nano 2018, 12, 2569–2579.

    Article  CAS  Google Scholar 

  40. Stanford, M. G.; Pudasaini, P. R.; Belianinov, A.; Cross, N.; Noh, J. H.; Koehler, M. R.; Mandrus, D. G.; Duscher, G.; Rondinone, A. J.; Ivanov, I. N. et al. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: Enabling nanoscale direct write homo-junctions. Sci. Rep. 2016, 6, 27276.

    Article  CAS  Google Scholar 

  41. He, Z. Y.; Zhao, R.; Chen, X. F.; Chen, H. J.; Zhu, Y. M.; Su, H. M.; Huang, S. X.; Xue, J. M.; Dai, J. F.; Cheng, S. et al. Defect engineering in single-layer MoS2 using heavy ion irradiation. ACS Appl. Mater. Interfaces 2018, 10, 42524–42533.

    Article  CAS  Google Scholar 

  42. Cheng, Z. H.; Abuzaid, H.; Yu, Y. F.; Zhang, F.; Li, Y. L.; Noyce, S. G.; Williams, N. X.; Lin, Y. C.; Doherty, J. L.; Tao, C. G. et al. Convergent ion beam alteration of 2D materials and metal-2D interfaces. 2D Mater. 2019, 6, 034005.

    Article  CAS  Google Scholar 

  43. Jadwiszczak, J.; Keane, D.; Maguire, P.; Cullen, C. P.; Zhou, Y. B.; Song, H. D.; Downing, C.; Fox, D.; McEvoy, N.; Zhu, R. et al. MoS2 memtransistors fabricated by localized helium ion beam irradiation. ACS Nano 2019, 13, 14262–14273.

    Article  CAS  Google Scholar 

  44. Komsa, H. P.; Kotakoski, J.; Kurasch, S.; Lehtinen, O.; Kaiser, U.; Krasheninnikov, A. V. Two-dimensional transition metal dichalcogenides under electron irradiation: Defect production and doping. Phys. Rev. Lett. 2012, 109, 035503.

    Article  Google Scholar 

  45. Gao, L.; Liao, Q. L.; Zhang, X. K.; Liu, X. Z.; Gu, L.; Liu, B. S.; Du, J. L.; Ou, Y.; Xiao, J. K.; Kang, Z. et al. Defect-engineered atomically thin MoS2 homogeneous electronics for logic inverters. Adv. Mater. 2020, 32, 1906646.

    Article  CAS  Google Scholar 

  46. Stanford, M. G.; Pudasaini, P. R.; Gallmeier, E. T.; Cross, N.; Liang, L. B.; Oyedele, A.; Duscher, G.; Mahjouri-Samani, M.; Wang, K.; Xiao, K. et al. High conduction hopping behavior induced in transition metal dichalcogenides by percolating defect networks: Toward atomically thin circuits. Adv. Funct. Mater. 2017, 27, 1702829.

    Article  Google Scholar 

  47. Li, Z. Q.; Chen, F. Ion beam modification of two-dimensional materials: Characterization, properties, and applications. Appl. Phys. Rev. 2017, 4, 011103.

    Article  Google Scholar 

  48. Fox, D. S.; Zhou, Y. B.; Maguire, P.; O’Neill, A.; Ó’Coileaín, C.; Gatensby, R.; Glushenkov, A. M.; Tao, T.; Duesberg, G. S.; Shvets, I. V.; Abid, M. et al. Nanopatterning and electrical tuning of MoS2 layers with a subnanometer helium ion beam. Nano Lett. 2015, 15, 5307–5313.

    Article  CAS  Google Scholar 

  49. Kim, T. Y.; Cho, K.; Park, W.; Park, J.; Song, Y.; Hong, S.; Hong, W. K.; Lee, T. Irradiation effects of high-energy proton beams on MoS2 field effect transistors. ACS Nano 2014, 8, 2774–2781.

    Article  CAS  Google Scholar 

  50. Tosun, M.; Chan, L.; Amani, M.; Roy, T.; Ahn, G. H.; Taheri, P.; Carraro, C.; Ager, J. W.; Maboudian, R.; Javey, A. Air-stable n-doping of WSe2 by anion vacancy formation with mild plasma treatment. ACS Nano 2016, 10, 6853–6860.

    Article  CAS  Google Scholar 

  51. Wang, S. F.; Zhao, W. J.; Giustiniano, F.; Eda, G. Effect of oxygen and ozone on p-type doping of ultra-thin WSe2 and MoSe2 field effect transistors. Phys. Chem. Chem. Phys. 2016, 18, 4304–4309.

    Article  CAS  Google Scholar 

  52. Jones, A. M.; Yu, H. Y.; Ghimire, N. J.; Wu, S. F.; Aivazian, G.; Ross, J. S.; Zhao, B.; Yan, J. Q.; Mandrus, D. G.; Xiao, D. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 2013, 8, 634–638.

    Article  CAS  Google Scholar 

  53. Wang, Y. L.; Cong, C. X.; Yang, W. H.; Shang, J. Z.; Peimyoo, N.; Chen, Y.; Kang, J. Y.; Wang, J. P.; Huang, W.; Yu, T. Strain-induced direct-indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res. 2015, 8, 2562–2572.

    Article  CAS  Google Scholar 

  54. Zhu, C. R; Zhang, K.; Glazov, M.; Urbaszek, B.; Amand, T.; Ji, Z. W.; Liu, B. L.; Marie, X. Exciton valley dynamics probed by Kerr rotation in WSe2 monolayers. Phys. Rev. B 2014, 90, 161302(R).

    Article  Google Scholar 

  55. Ye, Y. X.; Dou, X. M.; Ding, K.; Jiang, D. S.; Yang, F. H.; Sun, B. Q. Pressure-induced K—Λ crossing in monolayer WSe2. Nanoscale 2016, 8, 10843–10848.

    Article  CAS  Google Scholar 

  56. Zheng, Y. J.; Chen, Y. F.; Huang, Y. L.; Gogoi, P. K.; Li, M. Y.; Li, L. J.; Trevisanutto, P. E.; Wang, Q. X.; Pennycook, S. J.; Wee, A. T. S. et al. Point defects and localized excitons in 2D WSe2. ACS Nano 2019, 13, 6050–6059.

    Article  CAS  Google Scholar 

  57. Zhang, S.; Wang, C. G.; Li, M. Y.; Huang, D.; Li, L. J.; Ji, W.; Wu, S. W. Defect structure of localized excitons in a WSe2 monolayer. Phys. Rev. Lett. 2017, 119, 046101.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from NRF CRP on Oxide Electronics on Silicon Beyond Moore (NRF-CRP15-2015-01), the National Natural Science Foundation of China (Nos. U2032147, 21872100, and 62004128), Singapore MOE Grant T2EP50220-0001, MOE AcRF Tier 1 Startup grant R-284-000-179-133, the Science and Engineering Research Council of A*STAR (Agency for Science, Technology and Research) Singapore, under Grant No. A20G9b0135, and the Fundamental Research Foundation of Shenzhen (No. JCYJ20190808152607389).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michel Bosman, Wei Chen or Andrew A. Bettiol.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, H., Zheng, Y., Loh, L. et al. Robust n-type doping of WSe2 enabled by controllable proton irradiation. Nano Res. 16, 1220–1227 (2023). https://doi.org/10.1007/s12274-022-4668-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4668-9

Keywords

Navigation