Skip to main content
Log in

Carbon aerogel microspheres with in-situ mineralized TiO2 for efficient microwave absorption

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Carbon aerogels (CAs) have been considered potential microwave absorption (MA) materials because of intrinsic hierarchical porous structure, low density, and excellent heat resistance. However, CAs always required to be ground into micron-scale powder before being used as microwave absorbers, which will inevitably destroy the hierarchical porous structure. Meanwhile, reproducing the optimized CAs powders is difficult. Herein, CAs microspheres with in-situ mineralized TiO2 were easily prepared via a sol-gel transition and calcination process. The uniform size of CA microspheres and the loaded TiO2 on the skeleton of CA yield great microwave attenuation performance while guaranteeing good impedance matching performance. The obtained TiO2/CA hybrid presented a minimum reflection loss value of −30.2 dB and a broad effective absorption bandwidth (reflection loss below −10 dB) of 6.2 GHz. The low density, MA performance, and controllable particle size make the novel TiO2/CA hybrid promising candidates for MA applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Quan, B.; Gu, W. H.; Sheng, J. Q.; Lv, X. F.; Mao, Y. Y.; Liu, L.; Huang, X. G.; Tian, Z. J.; Ji, G. B. From intrinsic dielectric loss to geometry patterns: Dual-principles strategy for ultrabroad band microwave absorption. Nano Res. 2021, 14, 1495–1501.

    Article  CAS  Google Scholar 

  2. Song, P.; Ma, Z. L.; Qiu, H.; Ru, Y. F.; Gu, J. W. High-efficiency electromagnetic interference shielding of rGO@FeNi/Epoxy composites with regular honeycomb structures. Nano-Micro Lett. 2022, 14, 51.

    Article  CAS  Google Scholar 

  3. Wang, T.; Kong, W. W.; Yu, W. C.; Gao, J. F.; Dai, K.; Yan, D. X.; Li, Z. M. A healable and mechanically enhanced composite with segregated conductive network structure for high-efficient electromagnetic interference shielding. Nano-Micro Lett. 2021, 13, 162.

    Article  CAS  Google Scholar 

  4. Lv, H. L.; Yang, Z. H.; Liu, B.; Wu, G. L.; Lou, Z. C.; Fei, B.; Wu, R. B. A flexible electromagnetic wave-electricity harvester. Nat. Commun. 2021, 12, 834.

    Article  CAS  Google Scholar 

  5. Lv, H. L.; Yang, Z. H.; Pan, H. G.; Wu, R. B. Electromagnetic absorption materials: Current progress and new frontiers. Prog. Mater. Sci. 2022, 127, 100946.

    Article  CAS  Google Scholar 

  6. Zhang, Z.; Tan, J. W.; Gu, W. H.; Zhao, H. Q.; Zheng, J.; Zhang, B. S.; Ji, G. B. Cellulose-chitosan framework/polyailine hybrid aerogel toward thermal insulation and microwave absorbing application. Chem. Eng. J. 2020, 395, 125190.

    Article  CAS  Google Scholar 

  7. Zhang, M.; Han, C.; Cao, W. Q.; Cao, M. S.; Yang, H. J.; Yuan, J. A Nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano-Micro Lett. 2021, 13, 27.

    Article  Google Scholar 

  8. Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)−(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res., in press, https://doi.org/10.1007/s12274-022-4159-z.

  9. Wu, H. Y.; Jia, L. C.; Yan, D. X.; Gao, J. F.; Zhang, X. P.; Ren, P. G.; Li, Z. M. Simultaneously improved electromagnetic interference shielding and mechanical performance of segregated carbon nanotube/polypropylene composite via solid phase molding. Compos. Sci. Technol. 2018, 156, 87–94.

    Article  CAS  Google Scholar 

  10. Gou, G. J.; Meng, F. B.; Wang, H. G.; Jiang, M.; Wei, W.; Zhou, Z. W. Wheat straw-derived magnetic carbon foams: In-situ preparation and tunable high-performance microwave absorption. Nano Res. 2019, 12, 1423–1429.

    Article  CAS  Google Scholar 

  11. Zhao, H. B.; Cheng, J. B.; Wang, Y. Z. Biomass-derived Co@crystalline carbon@carbon aerogel composite with enhanced thermal stability and strong microwave absorption performance. J. Alloys Compd. 2018, 736, 71–79.

    Article  CAS  Google Scholar 

  12. Xi, J. B.; Zhou, E. Z.; Liu, Y. J.; Gao, W. W.; Ying, J.; Chen, Z. C.; Gao, C. Wood-based straightway channel structure for high performance microwave absorption. Carbon 2017, 124, 492–498.

    Article  CAS  Google Scholar 

  13. Guo, L.; An, Q. D.; Xiao, Z. Y.; Zhai, S. R.; Cui, L.; Li, Z. C. Performance enhanced electromagnetic wave absorber from controllable modification of natural plant fiber. RSC Adv. 2019, 9, 16690–16700.

    Article  CAS  Google Scholar 

  14. Zhao, H. Q.; Cheng, Y.; Lv, H. L.; Ji, G. B.; Du, Y. W. A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption. Carbon 2019, 142, 245–253.

    Article  CAS  Google Scholar 

  15. Li, Q. S.; Zhu, J. J.; Wang, S. N.; Huang, F.; Liu, Q. C.; Kong, X. K. Microwave absorption on a bare biomass derived holey silica-hybridized carbon absorbent. Carbon 2020, 161, 639–646.

    Article  CAS  Google Scholar 

  16. Qiu, X.; Wang, L. X.; Zhu, H. L.; Guan, Y. K.; Zhang, Q. T. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Nanoscale 2017, 9, 7408–7418.

    Article  CAS  Google Scholar 

  17. Wei, Y.; Liu, H. J.; Liu, S. C.; Zhang, M. M.; Shi, Y. P.; Zhang, J. W.; Zhang, L.; Gong, C. H. Waste cotton-derived magnetic porous carbon for high-efficiency microwave absorption. Compos. Commun. 2018, 9, 70–75.

    Article  Google Scholar 

  18. Sun, X. X.; Yang, M. L.; Yang, S.; Wang, S. S.; Yin, W. L.; Che, R. C.; Li, Y. B. Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure. Small 2019, 15, 1902974.

    Article  CAS  Google Scholar 

  19. Wang, Y. Y.; Zhou, Z. H.; Zhu, J. L.; Sun, W. J.; Yan, D. X.; Dai, K.; Li, Z. M. Low-temperature carbonized carbon nanotube/cellulose aerogel for efficient microwave absorption. Compos. Part B:Eng. 2021, 220, 108985.

    Article  CAS  Google Scholar 

  20. Liang, L. L.; Zhang, Z. Q.; Song, F.; Zhang, W.; Li, H.; Gu, J. J.; Liu, Q. L.; Zhang, D. Ultralight, flexible carbon hybrid aerogels from bacterial cellulose for strong microwave absorption. Carbon 2020, 162, 283–291.

    Article  CAS  Google Scholar 

  21. Zhang, C.; Wu, Z. C.; Xu, C. Y.; Yang, B. T.; Wang, L.; You, W. B.; Che, R. C. Hierarchical Ti3C2Tx MXene/carbon nanotubes hollow microsphere with confined magnetic nanospheres for broadband microwave absorption. Small 2022, 18, 2104380.

    Article  CAS  Google Scholar 

  22. Chen, X. T.; Wu, Y.; Gu, W. H.; Zhou, M.; Tang, S. L.; Cao, J. M.; Zou, Z. Q.; Ji, G. B. Research progress on nanostructure design and composition regulation of carbon spheres for the microwave absorption. Carbon 2022, 189, 617–633.

    Article  CAS  Google Scholar 

  23. Wang, L.; Li, X.; Shi, X. F.; Huang, M. Q.; Li, X. H.; Zeng, Q. W.; Che, R. C. Recent progress of microwave absorption microspheres by magnetic-dielectric synergy. Nanoscale 2021, 13, 2136–2156.

    Article  CAS  Google Scholar 

  24. Kumar, R.; Mondal, D. P.; Chaudhary, A.; Shafeeq, M.; Kumari, S. Excellent EMI shielding performance and thermal insulating properties in lightweight, multifunctional carbon-cenosphere composite foams. Compos. Part A:Appl. Sci. Manuf. 2018, 112, 475–484.

    Article  CAS  Google Scholar 

  25. Jatoi, A. W.; Kim, I. S.; Ni, Q. Q. Cellulose acetate nanofibers embedded with AgNPs anchored TiO2 nanoparticles for long term excellent antibacterial applications. Carbohydr. Polym. 2019, 207, 640–649.

    Article  CAS  Google Scholar 

  26. Zhou, Z. H.; Liang, Y.; Huang, H. D.; Li, L.; Yang, B.; Li, M. Z.; Yan, D. X.; Lei, J.; Li, Z. M. Structuring dense three-dimensional sheet-like skeleton networks in biomass-derived carbon aerogels for efficient electromagnetic interference shielding. Carbon 2019, 152, 316–324.

    Article  CAS  Google Scholar 

  27. Wang, D.; Tan, Y.; Yu, L. N.; Xiao, Z. X.; Du, J.; Ling, J.; Li, N.; Wang, J. D.; Xu, S. M.; Huang, J. B. Tuning morphology and mechanical property of polyacrylamide/Laponite/titania dual nanocomposite hydrogels by titania. Polym. Compos. 2019, 40, E466–E475.

    Article  CAS  Google Scholar 

  28. Xu, H. L.; Yin, X. W.; Zhu, M.; Li, M. H.; Zhang, H.; Wei, H. J.; Zhang, L. T.; Cheng, L. F. Constructing hollow graphene Nanospheres confined in porous amorphous carbon particles for achieving full X band microwave absorption. Carbon 2019, 142, 346–353.

    Article  CAS  Google Scholar 

  29. Sun, G. B.; Wu, H.; Liao, Q. L.; Zhang, Y. Enhanced microwave absorption performance of highly dispersed CoNi nanostructures arrayed on graphene. Nano Res. 2018, 11, 2689–2704.

    Article  CAS  Google Scholar 

  30. Gao, S.; Zhang, G. Z.; Wang, Y.; Han, X. P.; Huang, Y.; Liu, P. B. MOFs derived magnetic porous carbon microspheres constructed by core-shell Ni@C with high-performance microwave absorption. J. Mater. Sci. Technol. 2021, 88, 56–65.

    Article  CAS  Google Scholar 

  31. Pawar, S. P.; Biswas, S.; Kar, G. P.; Bose, S. High frequency millimetre wave absorbers derived from polymeric nanocomposites. Polymer 2016, 84, 398–419.

    Article  CAS  Google Scholar 

  32. Wang, Y. Y.; Zhou, Z. H.; Zhou, C. G.; Sun, W. J.; Gao, J. F.; Dai, K.; Yan, D. X.; Li, Z. M. Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 8704–8712.

    Article  CAS  Google Scholar 

  33. Wang, L.; Ma, Z. L.; Zhang, Y. L.; Chen, L. X.; Cao, D. P.; Gu, J. W. Polymer-based EMI shielding composites with 3D conductive networks: A mini-review. SusMat 2021, 1, 413–431.

    Article  CAS  Google Scholar 

  34. Lv, H. L.; Liang, X. H.; Cheng, Y.; Zhang, H. Q.; Tang, D. M.; Zhang, B. S.; Ji, G. B.; Du, Y. W. Coin-like α-Fe2O3@CoFe2O4 core-shell composites with excellent electromagnetic absorption performance. ACS Appl. Mater. Interfaces 2015, 7, 4744–4750.

    Article  CAS  Google Scholar 

  35. Xu, J. J.; Liu, J. W.; Che, R. C.; Liang, C. Y.; Cao, M. S.; Li, Y.; Liu, Z. W. Polarization enhancement of microwave absorption by increasing aspect ratio of ellipsoidal nanorattles with Fe3O4 cores and hierarchical CuSiO3 shells. Nanoscale 2014, 6, 5782–5790.

    Article  CAS  Google Scholar 

  36. Dong, J. Y.; Ullal, R.; Han, J.; Wei, S. H.; Ouyang, X.; Dong, J. Z.; Gao, W. Partially crystallized TiO2 for microwave absorption. J. Mater. Chem. A 2015, 3, 5285–5288.

    Article  CAS  Google Scholar 

  37. Zhou, X. D.; Han, H.; Wang, Y. C.; Zhang, C.; Lv, H. L.; Lou, Z. C. Silicon-coated fibrous network of carbon nanotube/iron towards stable and wideband electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 121, 199–206.

    Article  Google Scholar 

  38. Zhang, X. J.; Zhu, J. Q.; Yin, P. G.; Guo, A. P.; Huang, A. P.; Guo, L.; Wang, G. S. Tunable high-performance microwave absorption of Co1−xS hollow spheres constructed by nanosheets within ultralow filler loading. Adv. Funct. Mater. 2018, 28, 1800761.

    Article  Google Scholar 

  39. Liu, X. F.; Hao, C. C.; He, L. H.; Yang, C.; Chen, Y. B.; Jiang, C. B.; Yu, R. H. Yolk-shell structured Co-C/void/Co9S8 composites with a tunable cavity for ultrabroadband and efficient low-frequency microwave absorption. Nano Res. 2018, 11, 4169–4182.

    Article  CAS  Google Scholar 

  40. Wang, Y. Y.; Sun, W. J.; Yan, D. X.; Dai, K.; Li, Z. M. Ultralight carbon nanotube/graphene/polyimide foam with heterogeneous interfaces for efficient electromagnetic interference shielding and electromagnetic wave absorption. Carbon 2021, 176, 118–125.

    Article  CAS  Google Scholar 

  41. He, S.; Wang, G. S.; Lu, C.; Liu, J.; Wen, B.; Liu, H.; Guo, L.; Cao, M. S. Enhanced wave absorption of nanocomposites based on the synthesized complex symmetrical CuS nanostructure and poly(vinylidene fluoride). J. Mater. Chem. A 2013, 1, 4685–4692.

    Article  CAS  Google Scholar 

  42. Sun, L.; Shi, Z. C.; He, B. L.; Wang, H. L.; Liu, S.; Huang, M. H.; Shi, J.; Dastan, D.; Wang, H. Asymmetric trilayer all-polymer dielectric composites with simultaneous high efficiency and high energy density: A novel design targeting advanced energy storage capacitors. Adv. Funct. Mater. 2021, 31, 2100280.

    Article  CAS  Google Scholar 

  43. Lv, H. L.; Yang, Z. H.; Xu, H. B.; Wang, L. Y.; Wu, R. B. An electrical switch-driven flexible electromagnetic absorber. Adv. Funct. Mater. 2019, 30, 1907251.

    Article  Google Scholar 

  44. Li, F.; Zhan, W. W.; Su, Y. T.; Siyal, S. H.; Bai, G.; Xiao, W.; Zhou, A. S.; Sui, G.; Yang, X. P. Achieving excellent electromagnetic wave absorption of ZnFe2O4@CNT/polyvinylidene fluoride flexible composite membranes by adjusting processing conditions. Compos. Part A:Appl. Sci. Manuf. 2020, 133, 105866.

    Article  CAS  Google Scholar 

  45. Xu, Z. J.; He, M.; Zhou, Y. M.; Nie, S. X.; Wang, Y. J.; Huo, Y.; Kang, Y. F.; Wang, R. L.; Xu, R.; Peng, H. et al. Spider web-like carbonized bacterial cellulose/MoSe2 nanocomposite with enhanced microwave attenuation performance and tunable absorption bands. Nano Res. 2021, 14, 738–746.

    Article  CAS  Google Scholar 

  46. Kong, L.; Wang, C.; Yin, X. W.; Fan, X. M.; Wang, W.; Huang, J. F. Electromagnetic wave absorption properties of a carbon nanotube modified by a tetrapyridinoporphyrazine interface layer. J. Mater. Chem. C 2017, 5, 7479–7488.

    Article  CAS  Google Scholar 

  47. Yu, Y. L.; Wang, M.; Bai, Y. Q.; Zhang, B.; An, L. L.; Zhang, J. Y.; Zhong, B. Tuning the inner hollow structure of lightweight amorphous carbon for enhanced microwave absorption. Chem. Eng. J. 2019, 375, 121914.

    Article  CAS  Google Scholar 

  48. Ye, F.; Song, Q.; Zhang, Z. C.; Li, W.; Zhang, S. Y.; Yin, X. W.; Zhou, Y. Z.; Tao, H. W.; Liu, Y. S.; Cheng, L. F. et al. Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption. Adv. Funct. Mater. 2018, 28, 1707205.

    Article  Google Scholar 

  49. Gupta, S.; Tai, N. H. Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon 2019, 152, 159–187.

    Article  CAS  Google Scholar 

  50. Zhou, X. F.; Jia, Z. R.; Feng, A. L.; Wang, X. X.; Liu, J. J.; Zhang, M.; Cao, H. J.; Wu, G. L. Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance. Carbon 2019, 152, 827–836.

    Article  CAS  Google Scholar 

  51. Wang, Y. Y.; Sun, W. J.; Lin, H.; Gao, P. P.; Gao, J. F.; Dai, K.; Yan, D. X.; Li, Z. M. Steric stabilizer-based promotion of uniform polyaniline shell for enhanced electromagnetic wave absorption of carbon nanotube/polyaniline hybrids. Compos. Part B:Eng. 2020, 199, 108309.

    Article  CAS  Google Scholar 

  52. Liu, P. B.; Zhang, Y. Q.; Yan, J.; Huang, Y.; Xia, L.; Guang, Z. X. Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 2019, 368, 285–298.

    Article  CAS  Google Scholar 

  53. Wang, X. X.; Cao, W. Q.; Cao, M. S.; Yuan, J. Assembling nanomicroarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 2020, 32, 2002112.

    Article  CAS  Google Scholar 

  54. Li, X. L.; Yin, X. W.; Song, C. Q.; Han, M. K.; Xu, H. L.; Duan, W. Y.; Cheng, L. F.; Zhang, L. T. Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 2018, 28, 1803938.

    Article  Google Scholar 

  55. Wen, B.; Cao, M. S.; Hou, Z. L.; Song, W. L.; Zhang, L.; Lu, M. M.; Jin, H. B.; Fang, X. Y.; Wang, W. Z.; Yuan, J. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 2013, 65, 124–139.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Key Research and Development Program of China (No. 2018YFB0704200), the National Natural Science Foundation of China (Nos. 51973142 and 21878194), and Fundamental Research Funds for the Central Universities (No. YJ2021145).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ding-Xiang Yan or Zhong-Ming Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YY., Zhu, JL., Li, N. et al. Carbon aerogel microspheres with in-situ mineralized TiO2 for efficient microwave absorption. Nano Res. 15, 7723–7730 (2022). https://doi.org/10.1007/s12274-022-4494-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4494-0

Keywords

Navigation