Skip to main content
Log in

Highly crystalline vinylene-linked covalent organic frameworks enhanced solid polycarbonate electrolyte for dendrite-free solid lithium metal batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of solid-state electrolytes (SSEs) with high ionic conductivity, outstanding electrochemical window, and promising mechanical strength is a key factor in realizing the commercialization of high energy density solid-state lithium metal batteries (LMBs). Covalent organic frameworks (COFs) are a functional crystalline material with highly customizable molecular networks and one-dimensional channel structures, thus showing great potential applications in SSEs. Herein, we design flexible COF-poly(vinyl ethylene carbonate) (PVEC) (abbreviated as COF-PVEC) composite electrolyte films with excellent ionic conductivity and high mechanical strength, enabling dendrite-free and long-term running solid-state LMBs. Owing to the lithium-philic triazine and carbon-carbon double bonds groups in the COF skeleton, the obtained flexible COF-PVEC shows high ionic conductivity up to 1.11 × 10−4 S·cm−1 at 40 °C, and enlarged electrochemical window up to 4.6 V (vs. Li+/Li) compared with pure PVEC electrolyte. At the same time, the lithium dendrites are efficiently inhibited after discharge-charging cycles, due to the improved Young’s modulus (150 MPa) and ordered channels of COF. Using the various features of COF-PVEC, we assembled a solid-state full battery with LiFePO4 cathode, which showed superior rate capacity (151.8, 146.2, 139.2, 128.1, 113.7, and 100.8 mAh·g−1 at 0.1, 0.2, 0.5, 1, 1.5, and 2 C, respectively) and excellent long-term cycling stability (over 400 cycles at 1 C). We believe that the COF-based composite electrolyte can become one of the most promising high-performance SSEs for solid-state LMBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

    Article  CAS  Google Scholar 

  2. Winter, M.; Barnett, B.; Xu, K. Before Li ion batteries. Chem. Rev. 2018, 118, 11433–11456.

    Article  CAS  Google Scholar 

  3. Dong, T. T.; Zhang, J. J.; Xu, G. J.; Chai, J. C.; Du, H. P.; Wang, L. L.; Wen, H. J.; Zang, X.; Du, A. B.; Jia, Q. M. et al. A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. Energy Environ. Sci. 2018, 11, 1197–1203.

    Article  CAS  Google Scholar 

  4. Xia, S. X.; Zhang, X.; Luo, L. L.; Pang, Y. P.; Yang, J. H.; Huang, Y. Z.; Zheng, S. Y. Highly stable and ultrahigh-rate Li metal anode enabled by fluorinated carbon fibers. Small 2021, 17, 2006002.

    Article  CAS  Google Scholar 

  5. Yu, Z.; Mackanic, D. G.; Michaels, W.; Lee, M.; Pei, A.; Feng, D. W.; Zhang, Q. H.; Tsao, Y.; Amanchukwu, C. V.; Yan, X. Z. et al. A dynamic, electrolyte-blocking, and single-ion-conductive network for stable lithium-metal anodes. Joule 2019, 3, 2761–2776.

    Article  CAS  Google Scholar 

  6. Niu, C. J.; Lee, H.; Chen, S. R.; Li, Q. Y.; Du, J.; Xu, W.; Zhang, J. G.; Whittingham, M. S.; Xiao, J.; Liu, J. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 2019, 4, 551–559.

    Article  CAS  Google Scholar 

  7. Zhao, Q.; Liu, X. T.; Stalin, S.; Khan, K.; Archer, L. A. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 2019, 4, 365–373.

    Article  CAS  Google Scholar 

  8. Zhao, Q.; Stalin, S.; Zhao, C. Z.; Archer, L. A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 2020, 5, 229–252.

    Article  CAS  Google Scholar 

  9. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.

    Article  CAS  Google Scholar 

  10. Lee, Y. G.; Fujiki, S.; Jung, C.; Suzuki, N.; Yashiro, N.; Omoda, R.; Ko, D. S.; Shiratsuchi, T.; Sugimoto, T.; Ryu, S. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes. Nat. Energy 2020, 5, 299–308.

    Article  CAS  Google Scholar 

  11. Tang, W. J.; Tang, S.; Zhang, C. J.; Ma, Q. T.; Xiang, Q.; Yang, Y. W.; Luo, J. Y. Simultaneously enhancing the thermal stability, mechanical modulus, and electrochemical performance of solid polymer electrolytes by incorporating 2D sheets. Adv. Energy Mater. 2018, 8, 1800866.

    Article  Google Scholar 

  12. Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H. H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P. et al. Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction. Chem. Rev. 2016, 116, 140–162.

    Article  CAS  Google Scholar 

  13. Wang, C. W.; Gong, Y. H.; Liu, B. Y.; Fu, K.; Yao, Y. G.; Hitz, E.; Li, Y. J.; Dai, J. Q.; Xu, S. M.; Luo, W. et al. Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano Lett. 2017, 17, 565–571.

    Article  CAS  Google Scholar 

  14. Luo, W.; Gong, Y. H.; Zhu, Y. Z.; Li, Y. J.; Yao, Y. G.; Zhang, Y.; Fu, K.; Pastel, G.; Lin, C. F.; Mo, Y. F. et al. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer. Adv. Mater. 2017, 29, 1606042.

    Article  Google Scholar 

  15. Chen, X. Z.; He, W. J.; Ding, L. X.; Wang, S. Q.; Wang, H. H. Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy Environ. Sci. 2019, 12, 938–944.

    Article  CAS  Google Scholar 

  16. Arya, A.; Sharma, A. L. A glimpse on all-solid-state Li-ion battery (asslib) performance based on novel solid polymer electrolytes: A topical review. J. Mater. Sci. 2020, 55, 6242–6304.

    Article  CAS  Google Scholar 

  17. Xiao, Y. H.; Wang, Y.; Bo, S. H.; Kim, J. C.; Miara, L. J.; Ceder, G. Understanding interface stability in solid-state batteries. Nat. Rev. Mater. 2020, 5, 105–126.

    Article  CAS  Google Scholar 

  18. Zheng, Y.; Yao, Y. Z.; Ou, J. H.; Li, M.; Luo, D.; Dou, H. Z.; Li, Z. Q.; Amine, K.; Yu, A. P.; Chen, Z. W. A review of composite solid-state electrolytes for lithium batteries: Fundamentals, key materials and advanced structures. Chem. Soc. Rev. 2020, 49, 8790–8839.

    Article  CAS  Google Scholar 

  19. Liu, L. H.; Mo, J. S.; Li, J. R.; Liu, J. X.; Yan, H. J.; Lyu, J.; Jiang, B.; Chu, L. H.; Li, M. C. Comprehensively-modified polymer electrolyte membranes with multifunctional PMIA for highly-stable all-solid-state lithium-ion batteries. J. Energy Chem. 2020, 48, 334–343.

    Article  Google Scholar 

  20. Polu, A. R.; Rhee, H. W.; Kim, D. K. New solid polymer electrolytes (PEO20-LiTDI-SN) for lithium batteries: Structural, thermal and ionic conductivity studies. J. Mater. Sci.: Mater. Electron. 2015, 26, 8548–8554.

    CAS  Google Scholar 

  21. Yang, L. Y.; Wei, D. X.; Xu, M.; Yao, Y. F.; Chen, Q. Transferring lithium ions in nanochannels: A PEO/Li+ solid polymer electrolyte design. Angew. Chem. 2014, 126, 3705–3709.

    Article  Google Scholar 

  22. Nitzan, A.; Ratner, M. A. Conduction in polymers: Dynamic disorder transport. J. Phys. Chem. 1994, 98, 1765–1775.

    Article  CAS  Google Scholar 

  23. Borodin, O.; Smith, G. D. Mechanism of ion transport in amorphous poly(ethylene oxide)/LiTFSI from molecular dynamics simulations. Macromolecules 2006, 39, 1620–1629.

    Article  CAS  Google Scholar 

  24. Cao, J.; Wang, L.; He, X. M.; Fang, M.; Gao, J.; Li, J. J.; Deng, L. F.; Chen, H.; Tian, G. Y.; Wang, J. L. et al. In situ prepared nanocrystalline TiO2-poly(methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries. J. Mater. Chem. A 2013, 1, 5955–5961.

    Article  CAS  Google Scholar 

  25. Wang, Q. J.; Song, W. L.; Fan, L. Z.; Shi, Q. Effect of alumina on triethylene glycol diacetate-2-propenoic acid butyl ester composite polymer electrolytes for flexible lithium ion batteries. J. Power Sources 2015, 279, 405–412.

    Article  CAS  Google Scholar 

  26. Gomez, E. D.; Panday, A.; Feng, E. H.; Chen, V.; Stone, G. M.; Minor, A. M.; Kisielowski, C.; Downing, K. H.; Borodin, O.; Smith, G. D. et al. Effect of ion distribution on conductivity of block copolymer electrolytes. Nano Lett. 2009, 9, 1212–1216.

    Article  CAS  Google Scholar 

  27. Zhai, H. W.; Xu, P. Y.; Ning, M. Q.; Cheng, Q.; Mandal, J.; Yang, Y. A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries. Nano Lett. 2017, 17, 3182–3187.

    Article  CAS  Google Scholar 

  28. Wan, J. Y.; Xie, J.; Kong, X.; Liu, Z.; Liu, K.; Shi, F. F.; Pei, A.; Chen, H.; Chen, W.; Chen, J. et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 2019, 14, 705–711.

    Article  CAS  Google Scholar 

  29. Dirican, M.; Yan, C. Y.; Zhu, P.; Zhang, X. W. Composite solid electrolytes for all-solid-state lithium batteries. Mater. Sci. Eng.: R: Rep. 2019, 136, 27–46.

    Article  Google Scholar 

  30. Tu, Z. Y.; Kambe, Y.; Lu, Y. Y.; Archer, L. A. Nanoporous polymer-ceramic composite electrolytes for lithium metal batteries. Adv. Energy Mater. 2014, 4, 1300654.

    Article  Google Scholar 

  31. Jung, S.; Kim, D. W.; Lee, S. D.; Cheong, M. C.; Nguyen, D. Q.; Cho, B. W.; Kim, H. S. Fillers for solid-state polymer electrolytes: Highlight. Bull. Korean Chem. Soc. 2009, 30, 2355–2361.

    Article  CAS  Google Scholar 

  32. Xiong, H. M.; Wang, Z. D.; Xie, D. P.; Cheng, L.; Xia, Y. Y. Stable polymer electrolytes based on polyether-grafted ZnO nanoparticles for all-solid-state lithium batteries. J. Mate. Chem. 2006, 16, 1345–1349.

    Article  CAS  Google Scholar 

  33. Chua, S.; Fang, R. P.; Sun, Z. H.; Wu, M. J.; Gu, Z.; Wang, Y. Z.; Hart, J. N.; Sharma, N.; Li, F.; Wang, D. W. Hybrid solid polymer electrolytes with two-dimensional inorganic nanofillers. Chem. -Eur. J. 2018, 24, 18180–18203.

    Article  CAS  Google Scholar 

  34. He, Z. J.; Chen, L.; Zhang, B. C.; Liu, Y. C.; Fan, L. Z. Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries. J. Power Sources 2018, 392, 232–238.

    Article  CAS  Google Scholar 

  35. Jeong, K.; Park, S.; Jung, G. Y.; Kim, S. H.; Lee, Y. H.; Kwak, S. K.; Lee, S. Y. Solvent-free, single lithium-ion conducting covalent organic frameworks. J. Am. Chem. Soc. 2019, 141, 5880–5885.

    Article  CAS  Google Scholar 

  36. Huang, N.; Wang, P.; Jiang, D. L. Covalent organic frameworks: A materials platform for structural and functional designs. Nat. Rev. Mater. 2016, 1, 16068.

    Article  CAS  Google Scholar 

  37. Kandambeth, S.; Biswal, B. P.; Chaudhari, H. D.; Rout, K. C.; Kunjattu, H. S.; Mitra, S.; Karak, S.; Das, A.; Mukherjee, R.; Kharul, U. K. Selective molecular sieving in self-standing porous covalent-organic-framework membranes. Adv. Mater. 2017, 29, 1603945.

    Article  Google Scholar 

  38. Ma, W. D.; Zheng, Q.; He, Y. T.; Li, G. R.; Guo, W. J.; Lin, Z.; Zhang, L. Size-controllable synthesis of uniform spherical covalent organic frameworks at room temperature for highly efficient and selective enrichment of hydrophobic peptides. J. Am. Chem. Soc. 2019, 141, 18271–18277.

    Article  CAS  Google Scholar 

  39. Xu, Q.; Tao, S. S.; Jiang, Q. H.; Jiang, D. L. Designing covalent organic frameworks with a tailored ionic interface for ion transport across one-dimensional channels. Angew. Chem., Int. Ed. 2020, 59, 4557–4563.

    Article  CAS  Google Scholar 

  40. Niu, C. Q.; Luo, W. J.; Dai, C. M.; Yu, C. B.; Xu, Y. X. High-voltage-tolerant covalent organic framework electrolyte with holistically oriented channels for solid-state lithium metal batteries with nickel-rich cathodes. Angew. Chem., Int. Ed. 2021, 60, 24915–24923.

    Article  CAS  Google Scholar 

  41. Sun, Q.; Aguila, B.; Perman, J.; Earl, L. D.; Abney, C. W.; Cheng, Y. C.; Wei, H.; Nguyen, N.; Wojtas, L.; Ma, S. Q. Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal. J. Am. Chem. Soc. 2017, 139, 2786–2793.

    Article  CAS  Google Scholar 

  42. Lin, Z. Y.; Guo, X. W.; Wang, Z. C.; Wang, B. Y.; He, S. M.; O’Dell, A.; Huang, J.; Li, H.; Yu, H. J.; Chen, L. Q. A wide-temperature superior ionic conductive polymer electrolyte for lithium metal battery. Nano Energy 2020, 73, 104786.

    Article  CAS  Google Scholar 

  43. Xu, Q.; Tao, S. S.; Jiang, Q. H.; Jiang, D. L. Ion conduction in polyelectrolyte covalent organic frameworks. J. Am. Chem. Soc. 2018, 140, 7429–7432.

    Article  CAS  Google Scholar 

  44. Zhou, B.; Jiang, J. N.; Zhang, F. F.; Zhang, H. N. Crosslinked poly(ethylene oxide)-based membrane electrolyte consisting of polyhedral oligomeric silsesquioxane nanocages for all-solid-state lithium ion batteries. J. Power Sources 2020, 449, 227541.

    Article  CAS  Google Scholar 

  45. Li, X. W.; Zheng, Y. W.; Li, C. Y. Dendrite-free, wide temperature range lithium metal batteries enabled by hybrid network ionic liquids. Energy Storage Mater. 2020, 29, 273–280.

    Article  Google Scholar 

  46. Wang, Y. X.; Zhang, K.; Jiang, X. Z.; Liu, Z. Y.; Bian, S. Y.; Pan, Y. Y.; Shan, Z.; Wu, M. M.; Xu, B. Q.; Zhang, G. Branched poly(ethylene glycol)-functionalized covalent organic frameworks as solid electrolytes. ACS Appl. Energy Mater. 2021, 4, 11720–11725.

    Article  CAS  Google Scholar 

  47. Xia, S. X.; Yang, B. B.; Zhang, H. B.; Yang, J. H.; Liu, W.; Zheng, S. Y. Ultrathin layered double hydroxide nanosheets enabling composite polymer electrolyte for all-solid-state lithium batteries at room temperature. Adv. Funct. Mater. 2021, 31, 2101168.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22022510, 51873039, and 21374106), and the National Key Research and Development Program of China (No. 2018YFD0400700).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengbing Yu, Li Zhang or Yuxi Xu.

Electronic Supplementary Material

12274_2022_4480_MOESM1_ESM.pdf

Highly crystalline vinylene-linked covalent organic frameworks enhanced solid polycarbonate electrolyte for dendrite-free solid lithium metal batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Niu, C., Yu, C. et al. Highly crystalline vinylene-linked covalent organic frameworks enhanced solid polycarbonate electrolyte for dendrite-free solid lithium metal batteries. Nano Res. 15, 8083–8090 (2022). https://doi.org/10.1007/s12274-022-4480-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4480-6

Keywords

Navigation