Skip to main content
Log in

Total conversion of centimeter-scale nickel foam into single atom electrocatalysts with highly selective CO2 electrocatalytic reduction in neutral electrolyte

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

To improve the atomic utilization of metals and reduce the cost of industrialization, the one-step total monoatomization of macroscopic bulk metals, as opposed to nanoscale metals, is effective. In this study, we used a thermal diffusion method to directly convert commercial centimeter-scale Ni foam to porous Ni single-atom-loaded carbon nanotubes (CNTs). As expected, owing to the coating of single-atom on porous, highly conductive CNT carriers, Ni single-atom electrocatalysts (Ni-SACs) exhibit extremely high activity and selectivity in CO2 electroreduction (CO2RR), yielding a current density of > 350 mA/cm2, a selectivity for CO of > 91% under a flow cell configuration using a 1 M potassium chloride (KCl) electrolyte. Based on the superior activity of the Ni-SACs electrocatalyst, an integrated gas-phase electrochemical zero-gap reactor was introduced to generate a significant amount of CO current for potential practical applications. The overall current can be increased to 800 mA, while maintaining CO Faradaic efficiencies (FEs) at above 90% per unit cell. Our findings and insights on the active site transformation mechanism for macroscopic bulk Ni foam conversion into single atoms can inform the design of highly active single-atom catalysts used in industrial CO2RR systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tan, X. Y.; Yu, C.; Ren, Y. W.; Cui, S.; Li, W.; Qiu, J. S. Recent advances in innovative strategies for the CO2 electroreduction reaction. Energy Environ. Sci. 2021, 14, 765–780.

    Article  CAS  Google Scholar 

  2. Ma, W. C.; He, X. Y.; Wang, W.; Xie, S. J.; Zhang, Q. H.; Wang, Y. Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts. Chem. Soc. Rev. 2021, 50, 12897–12914.

    Article  CAS  Google Scholar 

  3. Chen, C.; Kotyk, J. F. K.; Sheehan, S. W. Progress toward commercial application of electrochemical carbon dioxide reduction. Chem 2018, 4, 2571–2586.

    Article  CAS  Google Scholar 

  4. Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.

    Article  CAS  Google Scholar 

  5. Ross, M. B.; De Luna, P.; Li, Y. F.; Dinh, C. T.; Kim, D.; Yang, P. D.; Sargent, E. H. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2019, 2, 648–658.

    Article  CAS  Google Scholar 

  6. Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

    Article  CAS  Google Scholar 

  7. Gao, D. F.; Arán-Ais, R. M.; Jeon, H. S.; Cuenya, B. R. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2019, 2, 198–210.

    Article  CAS  Google Scholar 

  8. Fan, Q. K.; Zhang, X.; Ge, X. H.; Bai, L. C.; He, D. S.; Qu, Y. T.; Kong, C. C.; Bi, J. L.; Ding, D. W.; Cao, Y. Q. et al. Manipulating Cu nanoparticle surface oxidation states tunes catalytic selectivity toward CH4 or C2+ products in CO2 electroreduction. Adv. Energy Mater. 2021, 11, 2101424.

    Article  CAS  Google Scholar 

  9. Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

    Article  CAS  Google Scholar 

  10. Huang, Z.; Grim, R. G.; Schaidle, J. A.; Tao, L. The economic outlook for converting CO2 and electrons to molecules. Energy Environ. Sci. 2021, 14, 3664–3678.

    Article  CAS  Google Scholar 

  11. Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; van de Lagemaat, J.; Kelley, S. O.; Sargent, E. H. What should we make with CO2 and how can we make it? Joule 2018, 2, 825–832.

    Article  CAS  Google Scholar 

  12. Jouny, M.; Luc, W.; Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 2018, 57, 2165–2177.

    Article  CAS  Google Scholar 

  13. Verma, S.; Kim, B.; Jhong, H. R.; Ma, S. C.; Kenis, P. J. A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2. ChemSusChem 2016, 9, 1972–1979.

    Article  CAS  Google Scholar 

  14. Sun, X. H.; Tuo, Y. X.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem., Int. Ed. 2021, 60, 23614–23618.

    Article  CAS  Google Scholar 

  15. Zhou, W.; Cheng, K.; Kang, J. C.; Zhou, C.; Subramanian, V.; Zhang, Q. H.; Wang, Y. New horizon in C1 chemistry: Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chem. Soc. Rev. 2019, 48, 3193–3228.

    Article  CAS  Google Scholar 

  16. Chen, Y. P.; Wei, J. T.; Duyar, M. S.; Ordomsky, V. V.; Khodakov, A. Y.; Liu, J. Carbon-based catalysts for fischer-tropsch synthesis. Chem. Soc. Rev. 2021, 50, 2337–2366.

    Article  CAS  Google Scholar 

  17. Endrődi, B.; Samu, A.; Kecsenovity, E.; Halmágyi, T.; Sebők, D.; Janáky, C. Operando cathode activation with alkali metal cations for high current density operation of water-fed zero-gap carbon dioxide electrolysers. Nat. Energy 2021, 6, 439–448.

    Article  Google Scholar 

  18. Jiang, K.; Siahrostami, S.; Zheng, T. T.; Hu, Y. F.; Hwang, S.; Stavitski, E.; Peng, Y. D.; Dynes, J.; Gangisetty, M.; Su, D. et al. Isolated Ni single atoms in graphene nanosheets for highperformance CO2 reduction. Energy Environ. Sci. 2018, 11, 893–903.

    Article  CAS  Google Scholar 

  19. Zheng, T. T.; Jiang, K.; Wang, H. T. Recent advances in electrochemical CO2-to-CO conversion on heterogeneous catalysts. Adv. Mater. 2018, 30, 1802066.

    Article  Google Scholar 

  20. Ren, S. X.; Joulié, D.; Salvatore, D.; Torbensen, K.; Wang, M.; Robert, M.; Berlinguette, C. P. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 2019, 365, 367–369.

    Article  CAS  Google Scholar 

  21. Yang, J.; Qiu, Z. Y.; Zhao, C. M.; Wei, W. C.; Chen, W. X.; Li, Z. J.; Qu, Y. T.; Dong, J. C.; Luo, J.; Li, Z. Y. et al. In situ thermal atomization to convert supported nickel nanoparticles into surface-bound nickel single-atom catalysts. Angew. Chem., Int. Ed. 2018, 57, 14095–14100.

    Article  CAS  Google Scholar 

  22. Endrődi, B.; Kecsenovity, E.; Samu, A.; Halmágyi, T.; Rojas-Carbonell, S.; Wang, L.; Yan, Y.; Janáky, C. High carbonate ion conductance of a robust piperion membrane allows industrial current density and conversion in a zero-gap carbon dioxide electrolyzer cell. Energy Environ. Sci. 2020, 13, 4098–4105.

    Article  Google Scholar 

  23. Li, S. M.; Zhao, S. Q.; Lu, X. Y.; Ceccato, M.; Hu, X. M.; Roldan, A.; Catalano, J.; Liu, M.; Skrydstrup, T.; Daasbjerg, K. Low-valence Znδ+ (0 < δ < 2) single-atom material as highly efficient electrocatalyst for CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 22826–22832.

    Article  CAS  Google Scholar 

  24. Liu, M.; Pang, Y. J.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J. X.; Zheng, X. L.; Dinh, C. T.; Fan, F. J.; Cao, C. H. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016, 537, 382–386.

    Article  CAS  Google Scholar 

  25. Zhang, N. Q.; Zhang, X. X.; Tao, L.; Jiang, P.; Ye, C. L.; Lin, R.; Huang, Z. W.; Li, A.; Pang, D. W.; Yan, H. et al. Silver single-atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction. Angew. Chem., Int. Ed. 2021, 60, 6170–6176.

    Article  CAS  Google Scholar 

  26. Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dualatom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 13388–13393.

    Article  CAS  Google Scholar 

  27. Torbensen, K.; Joulié, D.; Ren, S. X.; Wang, M.; Salvatore, D.; Berlinguette, C. P.; Robert, M. Molecular catalysts boost the rate of electrolytic CO2 reduction. ACS Energy Lett. 2020, 5, 1512–1518.

    Article  CAS  Google Scholar 

  28. Gu, H. L.; Zhong, L. X.; Shi, G. S.; Li, J. Q.; Yu, K.; Li, J.; Zhang, S.; Zhu, C. Y.; Chen, S. H.; Yang, C. L. et al. Graphdiyne/graphene heterostructure: A universal 2D scaffold anchoring monodispersed transition-metal phthalocyanines for selective and durable CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 8679–8688.

    Article  CAS  Google Scholar 

  29. Popović, S.; Smiljanić, M.; Jovanovič, P.; Vavra, J.; Buonsanti, R.; Hodnik, N. Stability and degradation mechanisms of copper-based catalysts for electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 14736–14746.

    Article  Google Scholar 

  30. Qu, Q. Y.; Ji, S. F.; Chen, Y. J.; Wang, D. S.; Li, Y. D. The atomic-level regulation of single-atom site catalysts for the electrochemical CO2 reduction reaction. Chem. Sci. 2021, 12, 4201–4215.

    Article  CAS  Google Scholar 

  31. Gao, D. F.; Liu, T. F.; Wang, G. X.; Bao, X. H. Structure sensitivity in single-atom catalysis toward CO2 electroreduction. ACS Energy Lett. 2021, 6, 713–727.

    Article  CAS  Google Scholar 

  32. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    Article  CAS  Google Scholar 

  33. Gu, J.; Hsu, C. S.; Bai, L. C.; Chen, H. M.; Hu, X. L. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019, 364, 1091–1094.

    Article  CAS  Google Scholar 

  34. Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X. et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem. 2018, 130, 1962–1966.

    Article  Google Scholar 

  35. Feng, J. Q.; Gao, H. S.; Zheng, L. R.; Chen, Z. P.; Zeng, S. J.; Jiang, C. Y.; Dong, H. F.; Liu, L. C.; Zhang, S. J.; Zhang, X. P. A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction. Nat. Commun. 2020, 11, 4341.

    Article  Google Scholar 

  36. Wang, Q. Y.; Liu, K.; Fu, J. W.; Cai, C.; Li, H. J. W.; Long, Y.; Chen, S. Y.; Liu, B.; Li, H. M.; Li, W. Z. et al. Atomically dispersed s-block magnesium sites for electroreduction of CO2 to CO. Angew. Chem., Int. Ed. 2021, 60, 25241–25245.

    Article  CAS  Google Scholar 

  37. Wu, Y. H.; Chen, C. J.; Yan, X. P.; Sun, X. F.; Zhu, Q. G.; Li, P. S.; Li, Y. M.; Liu, S. J.; Ma, J. Y.; Huang, Y. Y. et al. Boosting CO2 electroreduction over a cadmium single-atom catalyst by tuning of the axial coordination structure. Angew. Chem. 2021, 133, 20971–20978.

    Article  Google Scholar 

  38. Xiong, H. F.; Datye, A. K.; Wang, Y. Thermally stable single-atom heterogeneous catalysts. Adv. Mater. 2021, 33, 2004319.

    Article  CAS  Google Scholar 

  39. Liu, L. C.; Meira, D. M.; Arenal, R.; Concepcion, P.; Puga, A. V.; Corma, A. Determination of the evolution of heterogeneous single metal atoms and nanoclusters under reaction conditions: Which are the working catalytic sites? ACS Catal. 2019, 9, 10626–10639.

    Article  CAS  Google Scholar 

  40. Jones, J.; Xiong, H. F.; DeLaRiva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G.; Oh, S.; Wiebenga, M. H.; Hernández, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154.

    Article  CAS  Google Scholar 

  41. Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.

    Article  CAS  Google Scholar 

  42. Lin, L. H.; Chen, Z.; Chen, W. X. Single atom catalysts by atomic diffusion strategy. Nano Res. 2021, 14, 4398–4416.

    Article  CAS  Google Scholar 

  43. Li, H.; Wan, Q.; Du, C. C.; Liu, Q. N.; Qi, J. M.; Ding, X. Y.; Wang, S.; Wan, S. L.; Lin, J. D.; Tian, C. et al. Vapor-phase self-assembly for generating thermally stable single-atom catalysts. Chem 2022, 8, 731–748.

    Article  Google Scholar 

  44. Yang, Z. K.; Zhao, C. M.; Qu, Y. T.; Zhou, H.; Zhou, F. Y.; Wang, J.; Wu, Y. E.; Li, Y. D. Trifunctional self-supporting cobalt-embedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk metal. Adv. Mater. 2019, 31, 1808043.

    Article  Google Scholar 

  45. Qu, Y. T.; Chen, B. X.; Li, Z. J.; Duan, X. Z.; Wang, L. G.; Lin, Y.; Yuan, T. W.; Zhou, F. Y.; Hu, Y. D.; Yang, Z. K. et al. Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal. J. Am. Chem. Soc. 2019, 141, 4505–4509.

    Article  CAS  Google Scholar 

  46. Cai, J. M.; Cao, A.; Wang, Z. B.; Lu, S. Y.; Jiang, Z.; Dong, X. Y.; Li, X. G.; Zang, S. Q. Surface oxygen vacancies promoted Pt redispersion to single-atoms for enhanced photocatalytic hydrogen evolution. J. Mater. Chem. A 2021, 9, 13890–13897.

    Article  CAS  Google Scholar 

  47. Liu, K. P.; Zhao, X. T.; Ren, G. Q.; Yang, T.; Ren, Y. J.; Lee, A. F.; Su, Y.; Pan, X. L.; Zhang, J. C.; Chen, Z. Q. et al. Strong metal-support interaction promoted scalable production of thermally stable single-atom catalysts. Nat. Commun. 2020, 11, 1263.

    Article  CAS  Google Scholar 

  48. Zhao, C. N.; Wang, Y.; Li, Z. J.; Chen, W. X.; Xu, Q.; He, D. S.; Xi, D. S.; Zhang, Q. H.; Yuan, T. W.; Qu, Y. T. et al. Solid-diffusion synthesis of single-atom catalysts directly from bulk metal for efficient CO2 reduction. Joule 2019, 3, 584–594.

    Article  CAS  Google Scholar 

  49. Qu, Y. T.; Li, Z. J.; Chen, W. X.; Lin, Y.; Yuan, T. W.; Yang, Z. K.; Zhao, C. M.; Wang, J.; Zhao, C.; Wang, X. et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 2018, 1, 781–786.

    Article  CAS  Google Scholar 

  50. Trasobares, S.; Stéphan, O.; Colliex, C.; Hsu, W. K.; Kroto, H. W.; Walton, D. R. M. Compartmentalized CNx nanotubes: Chemistry, morphology, and growth. J. Chem. Phys. 2002, 116, 8966–8972.

    Article  CAS  Google Scholar 

  51. Li, Y. Z.; Wei, B.; Zhu, M. H.; Chen, J. C.; Jiang, Q. K.; Yang, B.; Hou, Y.; Lei, L. C.; Li, Z. J.; Zhang, R. F. et al. Synergistic effect of atomically dispersed Ni—Zn pair sites for enhanced CO2 electroreduction. Adv. Mater. 2021, 33, 2102212.

    Article  CAS  Google Scholar 

  52. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Young Scientists Fund of the National Natural Science Foundation of China (No. 22101182), Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515110499), Shenzhen Science and Technology Program (No. JCYJ20210324095202006), Shenzhen University Young Teacher Research Project (No. 000002110713), the Shccig-Qinling Program (No. 2021JLM-27), and the Jinchuan Group Co. Ltd. Chemical Environmental Protection Industry Joint Laboratory (No. 20-0837).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunteng Qu, Chuncai Kong or Jian Yang.

Electronic Supplementary Material

12274_2022_4472_MOESM1_ESM.pdf

Total conversion of centimeter-scale nickel foam into single atom electrocatalysts with highly selective CO2 electrocatalytic reduction in neutral electrolyte

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Q., Gao, P., Ren, S. et al. Total conversion of centimeter-scale nickel foam into single atom electrocatalysts with highly selective CO2 electrocatalytic reduction in neutral electrolyte. Nano Res. 16, 2003–2010 (2023). https://doi.org/10.1007/s12274-022-4472-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4472-6

Keywords

Navigation