Skip to main content
Log in

Quantum-dot light-emitting diodes with Fermi-level pinning at the hole-injection/hole-transporting interfaces

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Quantum-dot light-emitting diodes (QLEDs) are multilayer electroluminescent devices promising for next-generation display and solid-state-lighting technologies. In the state-of-the-art QLEDs, hole-injection layers (HILs) with high work functions are generally used to achieve efficient hole injection. In these devices, Fermi-level pinning, a phenomenon often observed in heterojunctions involving organic semiconductors, can take place in the hole-injection/hole-transporting interfaces. However, an in-depth understanding of the impacts of Fermi-level pinning at the hole-injection/hole-transporting interfaces on the operation and performance of QLEDs is still lacking. Here, we develop a set of NiOx HILs with controlled work functions of 5.2–5.9 eV to investigate QLEDs with Fermi-level pinning at the hole-injection/hole-transporting interfaces. The results show that despite that Fermi-level pinning induces identical apparent hole-injection barriers, the red QLEDs using HILs with higher work functions show improved efficiency roll-off and better operational stability. Remarkably, the devices using the NiOx HILs with a work function of 5.9 eV demonstrate a peak external quantum efficiency of ∼ 18.0% and a long T95 operational lifetime of 8,800 h at 1,000 cd·m−2, representing the best-performing QLEDs with inorganic HILs. Our work provides a key design principle for future developments of the hole-injection/hole-transporting interfaces of QLEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994, 370, 354–357.

    Article  CAS  Google Scholar 

  2. Coe, S.; Woo, W. K.; Bawendi, M.; Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 2002, 420, 800–803.

    Article  CAS  Google Scholar 

  3. Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

    Article  CAS  Google Scholar 

  4. Won, Y. H.; Cho, O.; Kim, T.; Chung, D. Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575, 634–638.

    Article  CAS  Google Scholar 

  5. Kim, T.; Kim, K. H.; Kim, S.; Choi, S. M.; Jang, H.; Seo, H. K.; Lee, H.; Chung, D. Y.; Jang, E. Efficient and stable blue quantum dot light-emitting diode. Nature 2020, 586, 385–389.

    Article  CAS  Google Scholar 

  6. Yang, Y. X.; Zheng, Y.; Cao, W. R.; Titov, A.; Hyvonen, J.; Manders, J. R.; Xue, J. G.; Holloway, P. H.; Qian, L. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photonics. 2015, 9, 259–266.

    Article  CAS  Google Scholar 

  7. Zou, Y. T.; Ban, M. Y.; Cui, W.; Huang, Q.; Wu, C.; Liu, J. W.; Wu, H. H.; Song, T.; Sun, B. Q. A general solvent selection strategy for solution processed quantum dots targeting high performance light-emitting diode. Adv. Funct. Mater. 2017, 27, 1603325.

    Article  Google Scholar 

  8. Acharya, K. P.; Titov, A.; Hyvonen, J.; Wang, C. G.; Tokarz, J.; Holloway, P. H. High efficiency quantum dot light emitting diodes from positive aging. Nanoscale 2017, 9, 14451–14457.

    Article  CAS  Google Scholar 

  9. Cao, W. R.; Xiang, C. Y.; Yang, Y. X.; Chen, Q.; Chen, L. W.; Yan, X. L.; Qian, L. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun. 2018, 9, 2608.

    Article  Google Scholar 

  10. Zhang, Z. X.; Ye, Y. X.; Pu, C. D.; Deng, Y. Z.; Dai, X. L.; Chen, X. P.; Chen, D.; Zheng, X. R.; Gao, Y.; Fang, W. et al. Highperformance, solution-processed, and insulating-layer-free light-emitting diodes based on colloidal quantum dots. Adv. Mater. 2018, 30, 1801387.

    Article  Google Scholar 

  11. Shen, H. B.; Gao, Q.; Zhang, Y. B.; Lin, Y.; Lin, Q. L.; Li, Z. H.; Chen, L.; Zeng, Z. Z.; Li, X. G.; Jia, Y. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 2019, 13, 192–197.

    Article  CAS  Google Scholar 

  12. Luo, H. X.; Zhang, W. J.; Li, M. L.; Yang, Y. X.; Guo, M. X.; Tsang, S. W.; Chen, S. Origin of subthreshold turn-on in quantum-dot light-emitting diodes. ACS Nano 2019, 13, 8229–8236.

    Article  CAS  Google Scholar 

  13. Sun, Y. Z.; Su, Q.; Zhang, H.; Wang, F.; Zhang, S. D.; Chen, S. M. Investigation on thermally induced efficiency roll-off: Toward efficient and ultrabright quantum-dot light-emitting diodes. ACS Nano 2019, 13, 11433–11442.

    Article  CAS  Google Scholar 

  14. Chen, S.; Cao, W. R.; Liu, T. L.; Tsang, S. W.; Yang, Y. X.; Yan, X. L.; Qian, L. On the degradation mechanisms of quantum-dot light-emitting diodes. Nat. Commun. 2019, 70, 765.

    Article  Google Scholar 

  15. Li, Y.; Hou, X. Q.; Dai, X. L.; Yao, Z. L.; Lv, L. L.; Jin, Y. Z.; Peng, X. G. Stoichiometry-controlled InP-based quantum dots: Synthesis, photoluminescence, and electroluminescence. J. Am. Chem. Soc. 2019, 141, 6448–6452.

    Article  CAS  Google Scholar 

  16. Pu, C. D.; Dai, X. L.; Shu, Y. F.; Zhu, M. Y.; Deng, Y. Z.; Jin, Y. Z.; Peng, X. G. Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots. Nat. Commun. 2020, 11, 937.

    Article  CAS  Google Scholar 

  17. Lin, J.; Dai, X. L.; Liang, X. Y.; Chen, D. S.; Zheng, X. R.; Li, Y. F.; Deng, Y. Z.; Du, H.; Ye, Y. X.; Chen, D. et al. High-performance quantum-dot light-emitting diodes using NiOx hole-injection layers with a high and stable work function. Adv. Funct. Mater. 2020, 30, 1907265.

    Article  CAS  Google Scholar 

  18. Deng, Y. Z.; Lin, X.; Fang, W.; Di, D. W.; Wang, L. J.; Friend, R. H.; Peng, X. G.; Jin, Y. Z. Deciphering exciton-generation processes in quantum-dot electroluminescence. Nat. Commun. 2020, 11, 2309.

    Article  CAS  Google Scholar 

  19. Chen, D. S.; Chen, D.; Dai, X. L.; Zhang, Z. X.; Lin, J.; Deng, Y. Z.; Hao, Y. L.; Zhang, C.; Zhu, H. M.; Gao, F. et al. Shelf-stable quantum-dot light-emitting diodes with high operational performance. Adv. Mater. 2020, 32, e2006178.

    Article  Google Scholar 

  20. Ye, Y. X.; Zheng, X. R.; Chen, D. S.; Deng, Y. Z.; Chen, D.; Hao, Y. L.; Dai, X. L.; Jin, Y. Z. Design of the hole-injection/hole-transport interfaces for stable quantum-dot light-emitting diodes. J. Phys. Chem. Lett. 2020, 11, 4649–4654.

    Article  CAS  Google Scholar 

  21. Liu, D. Q.; Cao, S.; Wang, S. Y.; Wang, H. Q.; Dai, W.; Zou, B. S.; Zhao, J. L.; Wang, Y. J. Highly stable red quantum dot light-emitting diodes with long T95 operation lifetimes. J. Phys. Chem. Lett. 2020, 11, 3111–3115.

    Article  CAS  Google Scholar 

  22. Du, H.; Ma, L. Y.; Wang, X.; Li, Y. F.; Xu, M. P.; Liang, X. Y.; Chen, D. S.; Jin, Y. Z. Synthesis of Cu-modified nickel oxide nanocrystals and their applications as hole-injection layers for quantum-dot light-emitting diodes. Chem.—Eur. J. 2021, 27, 11298–11302.

    Article  CAS  Google Scholar 

  23. Chen, Z. N.; Su, Q.; Qin, Z. Y.; Chen, S. M. Effect and mechanism of encapsulation on aging characteristics of quantum-dot light-emitting diodes. Nano Res. 2021, 14, 320–327.

    Article  CAS  Google Scholar 

  24. Deng, Y. Z.; Peng, F.; Lu, Y.; Zhu, X. T.; Jin, W. X.; Qiu, J.; Dong, J. W.; Hao, Y. L.; Di, D. W.; Gao, Y. et al. High-performance green and blue quantum-dot light-emitting diodes with eliminated charge leakage. 2021, arXiv: 2111.11752. arXiv.org e-Print archive. https://arxiv.53yu.com/abs/2111.11752 (accessed 23 November, 2021).

  25. Li, X. Y.; Zhao, Y. B.; Fan, F. J.; Levina, L.; Liu, M.; Quintero-Bermudez, R.; Gong, X. W.; Quan, L. N.; Fan, J.; Yang, Z. Y.; Hoogland, S. et al. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination. Nat. Photonics 2018, 12, 159–164.

    Article  CAS  Google Scholar 

  26. Yang, X. Y.; Ma, Y. Y.; Mutlugun, E.; Zhao, Y. B.; Leck, K. S.; Tan, S. T.; Demir, H. V.; Zhang, Q. Y.; Du, H. J.; Sun, X. W. Stable, efficient, and all-solution-processed quantum dot light-emitting diodes with double-sided metal oxide nanoparticle charge transport layers. ACS Appl. Mater. Interfaces 2014, 6, 495–499.

    Article  CAS  Google Scholar 

  27. Zheng, C. X.; Li, F. S.; Zeng, Q. Y.; Hu, H. L.; Guo, T. L. Aqueous solution-processed molybdenum oxide as an efficient hole injection layer for flexible quantum dot light emitting diodes. Thin Solid Films 2019, 669, 387–391.

    Article  CAS  Google Scholar 

  28. Zhu, Y. B.; Hu, H. L.; Liu, Y.; Chen, M. S.; Lin, W. Z.; Ye, Y.; Guo, T. L.; Li, F. S. All-solution-processed high-performance quantum dot light emitting devices employing an inorganic thiocyanate as hole injection layer. Org. Electron. 2019, 70, 279–285.

    Article  CAS  Google Scholar 

  29. Sun, Y. Z.; Chen, W.; Wu, Y. H.; He, Z. B.; Zhang, S. D.; Chen, S. M. A low-temperature-annealed and UV-ozone-enhanced combustion derived nickel oxide hole injection layer for flexible quantum dot light-emitting diodes. Nanoscale 2019, 11, 1021–1028.

    Article  CAS  Google Scholar 

  30. Shin, J. S.; Kim, T. Y.; Heo, S. B.; Hong, J. A.; Park, Y.; Kang, S. J. Improving the performance of quantum-dot light-emitting diodes via an organic-inorganic hybrid hole injection layer. RSC Adv. 2021, 11, 4168–4172.

    Article  CAS  Google Scholar 

  31. Tengstedt, C.; Osikowicz, W.; Salaneck, W. R.; Parker, I. D.; Hsu, C. H.; Fahlman, M. Fermi-level pinning at conjugated polymer interfaces. Appl. Phys. Lett. 2006, 88, 053502.

    Article  Google Scholar 

  32. Braun, S.; Salaneck, W. R.; Fahlman, M. Energy-level alignment at organic/metal and organic/organic interfaces. Adv. Mater. 2009, 21, 1450–1472.

    Article  CAS  Google Scholar 

  33. Zhou, M.; Chua, L. L.; Png, R. Q.; Yong, C. K.; Sivaramakrishnan, S.; Chia, P. J.; Wee, A. T. S.; Friend, R. H.; Ho, P. K. H. Role of 3-hole-doped interfaces at Ohmic contacts to organic semiconductors. Phys. Rev. Lett. 2009, 103, 036601.

    Article  Google Scholar 

  34. Zhou, M.; Png, R. Q.; Sivaramakrishnan, S.; Chia, P. J.; Yong, C. K.; Chua, L. L.; Ho, P. K. H. Determination of the interface 5-hole density in a blue-emitting organic semiconductor diode by electromodulated absorption spectroscopy. Appl. Phys. Lett. 2010, 97, 113505.

    Article  Google Scholar 

  35. Manders, J. R.; Tsang, S. W.; Hartel, M. J.; Lai, T. H.; Chen, S.; Amb, C. M.; Reynolds, J. R.; So, F. Solution-processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells. Adv. Funct. Mater. 2013, 23, 2993–3001.

    Article  CAS  Google Scholar 

  36. Wang, L. J.; Rangger, G. M.; Romaner, L.; Heimel, G.; Bučko, T.; Ma, Z. Y.; Li, Q. K.; Shuai, Z. G.; Zojer, E. Electronic structure of self-assembled monolayers on Au(111) surfaces: The impact of backbone polarizability. Adv. Funct. Mater. 2009, 19, 3766–3775.

    Article  CAS  Google Scholar 

  37. Blakesley, J. C.; Greenham, N. C. Charge transfer at polymer-electrode interfaces: The effect of energetic disorder and thermal injection on band bending and open-circuit voltage. J. Appl. Phys. 2009, 106, 034507.

    Article  Google Scholar 

  38. Lange, I.; Blakesley, J. C.; Frisch, J.; Vollmer, A.; Koch, N.; Neher, D. Band bending in conjugated polymer layers. Phys. Rev. Lett. 2011, 106, 216402.

    Article  Google Scholar 

  39. Nesterov, A.; Paasch, G.; Scheinert, S.; Lindner, T. Simulation study of the influence of polymer modified anodes on organic LED performance. Synth. Met. 2002, 130, 165–175.

    Article  CAS  Google Scholar 

  40. Su, Q.; Chen, S. M. Thermal assisted up-conversion electroluminescence in quantum dot light emitting diodes. Nat. Commun. 2022, 13, 369.

    Article  CAS  Google Scholar 

  41. Jiang, Y. B.; Jiang, L.; Yeung, F. S. Y.; Xu, P.; Chen, S. M.; Kwok, H. S.; Li, G. J. All-inorganic quantum-dot light-emitting diodes with reduced exciton quenching by a MgO decorated inorganic hole transport layer. ACS Appl. Mater. Interfaces 2019, 11, 11119–11124.

    Article  CAS  Google Scholar 

  42. Yang, X. Y.; Zhang, Z. H.; Ding, T.; Wang, N.; Chen, G.; Dang, C. N.; Demir, H. V.; Sun, X. W. High-efficiency all-inorganic full-colour quantum dot light-emitting diodes. Nano Energy 2018, 46, 229–233.

    Article  CAS  Google Scholar 

  43. Bae, W. K.; Park, Y. S.; Lim, J.; Lee, D.; Padilha, L. A.; McDaniel, H.; Robel, I.; Lee, C.; Pietryga, J. M.; Klimov, V. I. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes. Nat. Commun. 2013, 4, 2661.

    Article  Google Scholar 

  44. Lim, J.; Park, Y. S.; Wu, K. F.; Yun, H. J.; Klimov, V. I. Droop-free colloidal quantum dot light-emitting diodes. Nano Lett. 2018, 18, 6645–6653.

    Article  CAS  Google Scholar 

  45. Hu, Z.; Liu, S. J.; Qin, H. Y.; Zhou, J. H.; Peng, X. G. Oxygen stabilizes photoluminescence of CdSe/CdS core/shell quantum dots via deionization. J. Am. Chem. Soc. 2020, 142, 4254–4264.

    Article  CAS  Google Scholar 

  46. Qin, W.; Guyot-Sionnest, P. Evidence for the role of holes in blinking: Negative and oxidized CdSe/CdS dots. ACS Nano 2012, 6, 9125–9132.

    Article  CAS  Google Scholar 

  47. Rinehart, J. D.; Schimpf, A. M.; Weaver, A. L.; Cohn, A. W.; Gamelin, D. R. Photochemical electronic doping of colloidal CdSe nanocrystals. J. Am. Chem. Soc. 2013, 135, 18782–18785.

    Article  CAS  Google Scholar 

  48. Han, M. G.; Lee, Y.; Kwon, H. I.; Lee, H.; Kim, T.; Won, Y. H.; Jang, E. InP-based quantum dot light-emitting diode with a blended emissive layer. ACS Energy Lett. 2021, 6, 1577–1585.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 91833303, 51911530155, 91733302, 22001187, and 52062019), the Key Research and Development Program of Zhejiang Province (No. 2020C01001) and the Natural Science Research Foundation of Jiangsu Higher Education Institutions (No. 20KJB150032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yizheng Jin.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Chen, D., Lin, J. et al. Quantum-dot light-emitting diodes with Fermi-level pinning at the hole-injection/hole-transporting interfaces. Nano Res. 15, 7453–7459 (2022). https://doi.org/10.1007/s12274-022-4260-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4260-3

Keywords

Navigation